
Computer Science 324
Computer Architecture
Mount Holyoke College
Fall 2007

Topic Notes: MIPS Instruction Set Architecture

vonNeumann Architecture
Modern computers use thevonNeumann architecture.

Idea: a set of instructions and a loop:

1. Fetch an instruction

2. Update next instruction location

3. Decode the instruction

4. Execute the instruction

5. GOTO 1

Basic picture of the system:

(microcode)

scratchpad

ALU:
arithmetic

logic
unit

Microsequencer
(BRAIN!)

control
store

The ALU knows how to do some set of arithmetic and logical operations on values in the scratch-
pad.

Usually the scratchpad is made up of a set ofregisters.

The micro-sequencer “brain” controls what the ALU reads from the scratchpad and where it might
put results, and when.

CS 324 Computer Architecture Fall 2007

We will get into details of the micro-sequencer later.

This is what makes up thecentral processing unit (CPU).

Expand this idea a bit:

other devices...

scratchpad

ALU:
arithmetic

logic
unit

Microsequencer
(BRAIN!)

control
store

(microcode)

CPU
Chip

Memory

Address Bus

Data Bus

lots of pins

mouse

CPU interacts with memory and other devices onbuses.

These buses just carry signals that represent the data. Moreon these later, too.

We’ll have to worry about how we can connect the CPU, memory, other devices to these buses.

There are a variety of speeds, startup rates:

• mouse, keyboard: slow

• disk, network: fast

2

CS 324 Computer Architecture Fall 2007

MIPS ISA
We will look at the MIPSinstruction set architecture (ISA).

Recall that the ISA is a key abstraction:

• interface between hardware and low-level software

• standardizes instructions, machine language bit patterns, etc.

• advantage: different implementations of the same architecture

• disadvantage: sometimes slows innovation

• the instructions are the language of the machine

• discussion: how important is binary compatibility?

MIPS processors are in extensive use by NEC, Nintendo, Cisco, SGI, Sony, etc.

Several popular architectures – See Figure 1.2 from P&H

MIPS is an example ofreduced instruction set computer (RISC) architecture.

RISC architectures have a fewer number of simple instructions thancomplex instruction set com-
puter (CISC)architectures.

We will discuss the relative advantages more later.

For now:

• the good news: not many instructions or addressing modes to learn

• the bad news: a single instruction performs only a very simple operation, so programming a
task takes many instructions

All modern ISAs have similar types of instructions.

MIPS Arithmetic Instructions

MIPS arithmetic instructions have three operands:

add a, b, c

This instruction takes the sum of scratchpad valuesb andc and puts the answer into scratchpad
valuea.

It is equivalant to the C code:

3

CS 324 Computer Architecture Fall 2007

a = b + c;

What if we want to code the following:

a = b + c + d;

We need to do it in two steps:

add a, b, c
add a, a, d

Note that multiple operands may refer to the same scratchpadlocation.

Thesub instruction is similar.

MIPS Registers and Memory

In MIPS, the operands must be registers.

• 32 registers are provided

• each register stores a 32-bit value

• compilers associate variables with registers

• registers are referred to by names such as$s0 and$t1

• we use the “s” registers for values that correspond to variables in our programs

• we use the “t” registers for temporary values (more on this later)

For example, consider this example from the text:

f = (g + h) - (i + j);

We choose (or better yet, a compiler chooses) registers to store the values of our variables:f in
$s0, g in $s1, h in $s2, i in $s3, andj in $s4.

We’ll also need to temporary values, which we will store in$t0 and$t1.

The MIPS code:

add $t0, $s1, $s2
add $t1, $s3, $s4
sub $s0, $t0, $t1

4

CS 324 Computer Architecture Fall 2007

What if you need more variables than there are registers?

Accessmemory!

• consider as a large, one-dimensional array, with an address

• a memoryaddressis an index into this array of values

• memory is a much larger storage space than registers, but access to that space is slower

• MIPS arithmetic (and other) instructions can’t operate directly on values in memory

• data must be transferred first from memory into a register, then the answer transferred back

Since registers are 32-bit (4-byte) values, we often accessmemory in words instead of bytes.

• 2
32 bytes with byte addresses from 0 to2

32
− 1

• 2
30 words with byte addresses0, 4, 8, ...232

− 4

• words must be aligned on 4-byte boundaries

So suppose we have the following C code to translate to MIPS:

A[12] = h + A[8];

whereA is an array of word-sized values.

We have the address of the first element ofA in register$s3 andh has been assigned to$s2.

First, note that the values in the arrayA are word-sized, so each entry takes 4 bytes. We can find
entries in the array:

A[0] $s3+0
A[1] $s3+4
A[2] $s3+8

... ...
A[8] $s3+32

... ...
A[12] $s3+48

The notation to get the value at location$s3+4, for example, is4($s3).

So what we’d like to write:

add 48($s3), $s2, 32($s3)

5

CS 324 Computer Architecture Fall 2007

But we can’t, since MIPS arithmetic instructions can’t operate on values in memory. We’ll have to
copy the valueA[8] into a temporary register, add into a temporary register, then store the value
in A[12].

The code:

lw $t0, 32($s3)
add $t0, $s2, $t0
sw $t0, 48($s3)

The new instructions are to load a wordlw and store a wordsw.

Aside: why is it OK to overwrite the value in$t0 in theadd instruction even though our original
C code doesn’t changeA[8]?

The address in$s3 is called abase registerand the constants we add to it are called theoffsets.

Immediate Addressing Mode

We often need to deal with constants. So far, the only way we’dbe able to add a constant to a
register is by having that constant in a register or a memory location (and how exactly would we
get it there?).

So there is a special format of theadd instruction: add immediate, specified asaddi. Its third
operand is a constant value used in the addition.

addi $s2, $s2, 4

MIPS Machine Language
MIPS assembly instructions correspond to 32-bit MIPS machine instructions.

For example:

add $t1, $s1, $s2

This corresponds to the machine instruction

00000010001100100100000000100000

Somehow, the fact that this is anadd instruction and which registers are involved is encoded in
this particular 32-bit value.

We interpret the 32-bit value in this case by breaking it downinto fieldsaccording to theinstruction
format.

6

CS 324 Computer Architecture Fall 2007

op rs rt rd shmat funct
6 bits 5 bits 5 bits 5 bits 5 bits 6 bits
0 17 18 8 0 32

000000 10001 10010 01000 00000 100000

The meanings of the fields:

• op: theopcode– 6 bits

• rs: the first register source operand – 5 bits (why?)

• rt: the second register source operand – 5 bits

• rd: the register destination operand – 5 bits

• shmat: the shift amount — 5 bits (more later)

• funct: the variant of the operation – 6 bits

This is an example of anR-type(register) instruction, which is encoded in theR-format. These are
the instructions that require three registers to be specified.

The 32 registers are encoded as follows:

Name Register Number Usage
$zero 0 constant value 0
$at 1 reserved for assembler use

$v0-$v1 2-3 values for results and expression evaluation
$a0-$a3 4-7 procedure parameters
$t0-$t7 8-15 temporary variables
$s0-$s7 16-23 saved variable values
$t8-$t9 24-25 more temporary variables

26-27 reserved for operating system use
$gp 28 global pointer
$sp 29 stack pointer
$fp 30 frame pointer
$ra 31 return address

Other instructions don’t need three registers. Immediate mode instructions, for example, need 2
registers and a constant value. These areI-type instructions, stored in theI-format:

addi $s1, $s2, 100

7

CS 324 Computer Architecture Fall 2007

op rs rt address
6 bits 5 bits 5 bits 16 bits
8 17 18 100

001000 10001 10010 0000000000110100

Here, three of the fields are replaced by a single 16-bit field called address. For theaddi
instruction, this stores the constant value to be added.

The load and store instructions use this format as well.

lw $t0, 1200($t1)

This instruction’s function is to retrieve the value from memory at the address pointed to by the
contents of$t1, offset by 1200, and store the value in$t0.

op rs rt address
35 9 8 1200

010101 01001 01000 0000010010110000

Thesw instruction is similar, with opcode 43.

MIPS Logical Instructions

We will look quickly at the logical shift instructions:sll andsrl, which stand for shift left
logical and shift right logical, respectively.

These instructions use theshamt field in an R-format instruction:

sll $t2, $s0, 4

op rs rt rd shmat funct
0 0 16 10 4 0

Note thatrs is not used.

Recall that these are quick ways to multiply and divide by powers of 2.

Bitwiseand, or, nor and the immediate versionsandi andori follow the R-format, much like
add andaddi.

MIPS Control Flow Instructions

Any non-trivial program needs to make decisions, hence theconditional branchinstructions:

beq reg1, reg2, label
bne reg1, reg2, label

8

CS 324 Computer Architecture Fall 2007

beq will cause a branch to the statement labeledlabel if the values ofreg1 andreg2 are
equal, and continue to the next instruction otherwise.

bne branches when not equal.

These use the I-format for the machine instruction:

bne $s0, $s1, Exit

op rs rt address
5 16 17 Exit

The address has to fit in 16 bits, so does this mean we can only branch to a 16-bit address? No
- we usually use theaddress field as a relative offset to the program counter (PC):PC-relative
addressing.

So if the labelExit is 44 away in the positive direction from the current programcounter, we
store 11 in the address field.

We divide by 4 since we know the bottom 2 bits are 0’s anyway (addresses are word-addressable).
This means we can jump anywhere from−2

17to217 from the current PC.

There is also an unconditional jump instruction:

j label

No registers here, so we have more bits available for the address. This is aJ-formatinstruction.

If we want to jump to memory location 4848, the instruction is:

op address
6 bits 26 bits

2 1212

Again, the bottom 2 bits are always 0, so we divide our intended jump target by 4 when encoding
the instruction.

We can also perform inequality comparisons with two more instructions:

slt $t1, $s2, $s1
slti $t2, $t4, 8

These are set on less than instructions, and set the value of the target register to 1 if the second
operand is less than the third, 0 otherwise.

We can use these to implement all of the conditional and looping constructs we are used to in
high-level languages.

Supposei is in $s0, j is in $s1, andh is in $s3.

9

CS 324 Computer Architecture Fall 2007

if (i==j) h = i + j;

MIPS assembly:

bne $s0, $s1, Label
add $s3, $s0, $s1

Label: ...

Slightly more complex:

if (i!=j) h = i + j;
else h = i - j;

assembles to:

beq $s0, $s1, ElsePart
add $s3, $s0, $s1
j OverIf

ElsePart:
sub $s3, $s0, $s1

OverIf: ...

And an inequality:

if (i<j) h = i + j;
else h = i - j;

assembles to:

slt $t0, $s0, $s1
beq $t0, $zero, ElsePart
add $s3, $s0, $s1
j OverIf

ElsePart:
sub $s3, $s0, $s1

OverIf: ...

Larger Constants in MIPS

So far, we have seen how to get 16-bit constants to use in immediate mode instructions. But what
if we want a 32-bit constant?

10

CS 324 Computer Architecture Fall 2007

MIPS requires that all instructions fit in a single 32-bit word, so we can’t have an opcode and the
whole 32-bit constant at once.

It takes two instructions:

First, “load upper immediate”:

lui $t0, 0xa532

This sets$t0 to 0xa5320000. It is an I-format instruction, using theaddress field of that
format to get the 16 bits for the top half of the specified register.

We can then put in appropriate lower order bits:

ori $t0, 0x8d7e

This will “or in” the bottom bits to have the constant specified, leaving the upper bits that we’ve
already set alone.$t0 is now0xa5328d7e.

What Else is Missing?

The MIPS ISA doesn’t provide instructions for operations that can easily be expressed as an exist-
ing operation.

For example, you might want to copy a value in one register to another:

move $t0, $t1

This is valid MIPSassemblylanguage, but not valid MIPSmachinelanguage. This is apseudoin-
struction.

As assembler would encode this as:

add $t0, $t1, $zero

In this case, there’s no extra cost. It’s still just one instruction.

Other pseudoinstructions may translate to more than one instruction. For example, the pseudoin-
structionbgt, which branches on greater than:

bgt $s1, $s2, Label

would likely translate to

11

CS 324 Computer Architecture Fall 2007

slt $t0, $s2, $s1
bne $t0, $zero, Label

When determining relative costs of different translations of high-level language into assembly,
this pseudoinstruction should be considered to cost twice as much as a regular instruction or a
pseudoinstruction that corresponds directly to a single machine instruction.

The text goes into more detail about the MIPS ISA, including the mechanisms for procedure calls,
I/O, and more. We may return to some of this later.

IA-32 ISA
The text also describes in Section 2.16, some details of the Intel IA-32 instruction set architecture.
Now that you know something about the MIPS ISA and its simplicity, that section will make for
interesting reading.

Some highlights:

A Brief History of the IA-32

• 1978: The Intel 8086 is announced (16 bit architecture)

• 1980: The 8087 floating point coprocessor is added

• 1982: The 80286 increases address space to 24 bits, +instructions

• 1985: The 80386 extends to 32 bits, new addressing modes

• 1989-1995: The 80486, Pentium, Pentium Pro add a few instructions (mostly designed for
higher performance)

• 1997: 57 new “MMX” instructions are added, Pentium II

• 1999: The Pentium III added another 70 instructions (SSE)

• 2001: Another 144 instructions (SSE2)

• 2003: AMD extends the architecture to increase address space to 64 bits, widens all registers
to 64 bits and other changes (AMD64)

• 2004: Intel capitulates and embraces AMD64 (calls it EM64T)and adds more media exten-
sions

IA-32 Overview

• Complexity:

12

CS 324 Computer Architecture Fall 2007

– Instructions from 1 to 17 bytes long

– one operand must act as both a source and destination

– one operand can come from memory

– complex addressing modes e.g., “base or scaled index with 8 or 32 bit displacement”

• Saving grace:

– the most frequently used instructions are not too difficult to build

– compilers avoid the portions of the architecture that are slow

• 8 general purpose registers plus 8 special purpose

• Lots of restrictions and caveats

Quotes about the IA-32

• “This history illustrates the impact of the ‘golden handcuffs’ of compatibility”

• “adding new features as someone might add clothing to a packed bag”

• “an architecture that is difficult to explain and impossibleto love”

• “what the 80x86 lacks in style is made up in quantity, making it beautiful from the right
perspective”

It’s worth a read through the section.

13

