Computer Science 324
M [] (Computer Architecture
_— Mount Holyoke College
MOUNT HOLYOKE COLLEGE Fa” 2007

Topic Notes: MIPS Instruction Set Architecture

vonNeumann Architecture
Modern computers use tiv®nNeumann architecture

Idea: a set of instructions and a loop:

. Fetch an instruction

. Update next instruction location

1
2
3. Decode the instruction
4. Execute the instruction
5

. GOTO 1

Basic picture of the system:

scratchpad

Microsequencer ONtrol

(BRAIN!) store
Y (microcode)

arithmetic
logic
unit

The ALU knows how to do some set of arithmetic and logical afiens on values in the scratch-
pad.

Usually the scratchpad is made up of a setegisters

The micro-sequencer “brain” controls what the ALU readsfthe scratchpad and where it might
put results, and when.

CS 324 Computer Architecture Fall 2007

We will get into details of the micro-sequencer later.
This is what makes up theentral processing unit (CPU)
Expand this idea a bit:

scratchpad
CPU
Chip
Microsequencer control
(BRAIN!) ~ store
(microcode)
ALU:
arithmetic
logic
? unit
lots of pins Memory
Address Bus
Data Bus
[other devices...

mouse

CPU interacts with memory and other devicesboises
These buses just carry signals that represent the data. didheese later, too.

We’ll have to worry about how we can connect the CPU, memohgratievices to these buses.

There are a variety of speeds, startup rates:

e mouse, keyboard: slow

e disk, network: fast

CS 324 Computer Architecture Fall 2007

MIPS ISA

We will look at the MIPSinstruction set architecture (ISA).

Recall that the ISA is a key abstraction:

interface between hardware and low-level software

standardizes instructions, machine language bit paftetos

advantage: different implementations of the same ardhitec

disadvantage: sometimes slows innovation

the instructions are the language of the machine

discussion: how important is binary compatibility?

MIPS processors are in extensive use by NEC, Nintendo, Cigeh,S®ny, etc.
Several popular architectures — See Figure 1.2 from P&H
MIPS is an example akduced instruction set computer (RISC) architecture

RISC architectures have a fewer number of simple instrustibancomplex instruction set com-
puter (CISC)architectures.

We will discuss the relative advantages more later.

For now:

¢ the good news: not many instructions or addressing modesia |

¢ the bad news: a single instruction performs only a very stngpleration, So programming a
task takes many instructions

All modern ISAs have similar types of instructions.

MIPS Arithmetic Instructions

MIPS arithmetic instructions have three operands:

add a, b, c

This instruction takes the sum of scratchpad valuesdc and puts the answer into scratchpad
valuea.

It is equivalant to the C code:

CS 324 Computer Architecture Fall 2007

What if we want to code the following:
a=»>b+c +d
We need to do it in two steps:

add a, b, c
add a, a, d

Note that multiple operands may refer to the same scratclogation.

Thesub instruction is similar.

MIPS Registers and Memory

In MIPS, the operands must be registers.

e 32 registers are provided

e each register stores a 32-bit value

e compilers associate variables with registers

e registers are referred to by names sucBs8 and$t 1

e We use the §” registers for values that correspond to variables in oagpams

e we use thet'” registers for temporary values (more on this later)

For example, consider this example from the text:

f=0g+h - (+]j);

We choose (or better yet, a compiler chooses) register®te #te values of our variables: in
$s0,gin$s1,hin$s2,i in$s3, andj in $s4.

We'll also need to temporary values, which we will storesin0 and$t 1.
The MIPS code:

add $t0, $s1, $s2
add $t1, $s3, $s4
sub $s0, $t0, $t1

CS 324 Computer Architecture Fall 2007

What if you need more variables than there are registers?

Accessmemory

e consider as a large, one-dimensional array, with an address

e a memoryaddresss an index into this array of values

e memory is a much larger storage space than registers, begsttwthat space is slower
e MIPS arithmetic (and other) instructions can't operatedclily on values in memory

e data must be transferred first from memory into a registen the answer transferred back
Since registers are 32-bit (4-byte) values, we often aaoessory in words instead of bytes.

e 232 bytes with byte addresses from 026 — 1
o 230 words with byte addressé€s4, 8, ...23% — 4

e words must be aligned on 4-byte boundaries

So suppose we have the following C code to translate to MIPS:
Al 12] = h + A[8];

whereA s an array of word-sized values.
We have the address of the first elemenfanh register$s 3 andh has been assigned $s 2.

First, note that the values in the arrAyare word-sized, so each entry takes 4 bytes. We can find
entries in the array:

A[0] $s3+0
Al1l] $s3+4
A[2] $53+8

A 8] $s3+32
Al 12] $s3+48
The notation to get the value at locati$a3+4, for example, igh($s3) .

So what we’d like to write:

add 48(%$s3), $s2, 32($s3)

CS 324 Computer Architecture Fall 2007

But we can't, since MIPS arithmetic instructions can't opei@n values in memory. We’'ll have to
copy the valued[8] into a temporary register, add into a temporary registen gtore the value
inA[12] .

The code:

lw $t0, 32($s3)
add $t0, $s2, $tO
sw $t0, 48($s3)

The new instructions are to load a wdrdrand store a wordw.

Aside: why is it OK to overwrite the value it O in theadd instruction even though our original
C code doesn’t chang¥ 8] ?

The address is3 is called abase registeand the constants we add to it are calleddfisets

Immediate Addressing Mode

We often need to deal with constants. So far, the only way we'é@ble to add a constant to a
register is by having that constant in a register or a menmgtion (and how exactly would we
get it there?).

So there is a special format of tlaeld instruction: add immediate, specified addi . Its third
operand is a constant value used in the addition.

addi $s2, $s2, 4

MIPS Machine Language
MIPS assembly instructions correspond to 32-bit MIPS maemstructions.

For example:

add $t1, $s1, $s2

This corresponds to the machine instruction
00000010001100100100000000100000

Somehow, the fact that this is @aud instruction and which registers are involved is encoded in
this particular 32-bit value.

We interpret the 32-bit value in this case by breaking it dowafieldsaccording to thénstruction
format

CS 324

The meanings of the fields:

Computer Architecture

op rs rt rd shmat | funct
6 bits 5bits | 5bits | 5bits | 5 bits 6 bits
0 17 18 8 0 32
000000 | 10001 | 10010 | 01000 | OO000 | 100000

e 0p: theopcode- 6 bits

r s: the first register source operand — 5 bits (why?)
rt : the second register source operand — 5 bits

r d: the register destination operand — 5 bits

shmat : the shift amount — 5 bits (more later)

f unct : the variant of the operation — 6 bits

Fall 2007

This is an example of aR-type(register) instruction, which is encoded in tReformat These are
the instructions that require three registers to be spdcifie

The 32 registers are encoded as follows:

| Name [Register Number |

Usage |

$zero 0 constant value 0

$at 1 reserved for assembler use
$vO0- vl 2-3 values for results and expression evaluat
$a0- $a3 4-7 procedure parameters
$tO-$t 7 8-15 temporary variables
$s0- $s7 16-23 saved variable values
$t8-$t9 24-25 more temporary variables

26-27 reserved for operating system use

$gp 28 global pointer

$sp 29 stack pointer

$fp 30 frame pointer

$ra 31 return address

ion

Other instructions don’t need three registers. Immediatdearinstructions, for example, need 2
registers and a constant value. Thesedypeinstructions, stored in thieformat

addi

$s1, $s2,

100

CS 324 Computer Architecture Fall 2007

op rs rt addr ess
6 bits 5 bits | 5 bits 16 bits
8 17 18 100
001000 | 10001 | 10010 | 0O0O0000000110100

Here, three of the fields are replaced by a single 16-bit fialted addr ess. For theaddi
instruction, this stores the constant value to be added.

The load and store instructions use this format as well.
lw $t0, 1200($t1)

This instruction’s function is to retrieve the value from mery at the address pointed to by the
contents ofpt 1, offset by 1200, and store the value$inO.

op rs rt addr ess
35 9 8 1200
010101 | 01001 | 01000 | 0000010010110000

Theswinstruction is similar, with opcode 43.

MIPS Logical Instructions

We will look quickly at the logical shift instructionss!| | andsr |, which stand for shift left
logical and shift right logical, respectively.

These instructions use tisdnant field in an R-format instruction:

sl $t2, $s0, 4

op|rs|rt |rd|shmat |funct

Note thatr s is not used.
Recall that these are quick ways to multiply and divide by peved 2.

Bitwiseand, or , nor and the immediate versioafndi andori follow the R-format, much like
add andaddi .

MIPS Control Flow Instructions

Any non-trivial program needs to make decisions, hencedmelitional branchnstructions:

beq regl, reg2, | abel
bne regl, reg2, |abel

CS 324 Computer Architecture Fall 2007

beqg will cause a branch to the statement labdlebel if the values ofr egl andr eg2 are
equal, and continue to the next instruction otherwise.

bne branches when not equal.

These use the I-format for the machine instruction:

bne $s0, $s1, Exit

op|rs |rt | address
5 (16| 17 Exit

The address has to fit in 16 bits, so does this mean we can aafglvito a 16-bit address? No
- we usually use thaddr ess field as a relative offset to the program counter (F&J-relative
addressing

So if the labelExi t is 44 away in the positive direction from the current progresanter, we
store 11 in the address field.

We divide by 4 since we know the bottom 2 bits are 0’s anywag(@skes are word-addressable).
This means we can jump anywhere fremd'7t02'7 from the current PC.

There is also an unconditional jump instruction:
j | abel

No registers here, so we have more bits available for theeaddiT his is d-formatinstruction.

If we want to jump to memory location 4848, the instruction is

op | address
6 bits| 26 bits
2 1212

Again, the bottom 2 bits are always 0, so we divide our interjdenp target by 4 when encoding
the instruction.

We can also perform inequality comparisons with two moré&utsions:

slt $t1, $s2, $si1
slti $t2, $t4, 8

These are set on less than instructions, and set the valle ¢ditget register to 1 if the second
operand is less than the third, O otherwise.

We can use these to implement all of the conditional and fapgonstructs we are used to in
high-level languages.

Supposé isin$s0,j isin$s1, andh is in $s3.

9

CS 324

if (i==j) h=1i +j;

MIPS assembly:

Computer Architecture

bne $s0, $s1, Label
add $s3, $s0, $si1
Label :
Slightly more complex:
if (i's)) h=1i +j;
else h =i - j;
assembles to:
beq $s0, $sl1, ElsePart
add $s3, $s0, $si
j Overlf
El sePart:
sub $s3, $s0, $si1
Overl f:
And an inequality
if (i<j) h=i +j;
else h =i - j;
assembles to:
slt $t0, $s0, $si
beq $t0, $zero, ElsePart
add $s3, $s0, $s1
j Overlf
El sePart:
sub $s3, $s0, $si1
Overl f:

Fall 2007

Larger Constants in MIPS

So far, we have seen how to get 16-bit constants to use in imaeetiode instructions. But what

if we want a 32-bit constant?

10

CS 324 Computer Architecture Fall 2007

MIPS requires that all instructions fit in a single 32-bit @pso we can’'t have an opcode and the
whole 32-bit constant at once.

It takes two instructions:

First, “load upper immediate”:
lui $t0, O0xab32

This sets$t 0 to 0xa5320000. It is an I-format instruction, using theddr ess field of that
format to get the 16 bits for the top half of the specified regis

We can then put in appropriate lower order bits:
ori $t0, 0x8d7e

This will “or in” the bottom bits to have the constant spedfiéeaving the upper bits that we've
already set alonebt 0 is now0Oxa5328d7e.

What Else is Missing?

The MIPS ISA doesn't provide instructions for operatiorstttan easily be expressed as an exist-
ing operation.

For example, you might want to copy a value in one registentileer:

nove $t0, $t1

This is valid MIPSassemblyanguage, but not valid MIP8achinelanguage. This is pseudoin-
struction

As assembler would encode this as:
add $t0, $t1, $zero

In this case, there’s no extra cost. It’s still just one instion.

Other pseudoinstructions may translate to more than oteigt®n. For example, the pseudoin-
structionbgt , which branches on greater than:

bgt $s1, $s2, Label

would likely translate to

11

CS 324 Computer Architecture Fall 2007

slt $t0, $s2, $si
bne $t0, $zero, Label

When determining relative costs of different translatiofsigh-level language into assembly,
this pseudoinstruction should be considered to cost twécmach as a regular instruction or a
pseudoinstruction that corresponds directly to a singlemme instruction.

The text goes into more detail about the MIPS ISA, includimgnechanisms for procedure calls,
I/0, and more. We may return to some of this later.

|A-32 ISA

The text also describes in Section 2.16, some details ohtielA-32 instruction set architecture.
Now that you know something about the MIPS ISA and its sinifglichat section will make for
interesting reading.

Some highlights:

A Brief History of the |A-32

e 1978: The Intel 8086 is announced (16 bit architecture)

e 1980: The 8087 floating point coprocessor is added

e 1982: The 80286 increases address space to 24 bits, +imstisic
e 1985: The 80386 extends to 32 bits, new addressing modes

e 1989-1995: The 80486, Pentium, Pentium Pro add a few irntgingc(mostly designed for
higher performance)

e 1997: 57 new “MMX” instructions are added, Pentium Il
e 1999: The Pentium Ill added another 70 instructions (SSE)
e 2001: Another 144 instructions (SSE2)

e 2003: AMD extends the architecture to increase addresesp&e! bits, widens all registers
to 64 bits and other changes (AMDG64)

e 2004: Intel capitulates and embraces AMDG64 (calls it EM64id adds more media exten-
sions

IA-32 Overview

e Complexity:

12

CS 324 Computer Architecture Fall 2007

Instructions from 1 to 17 bytes long

one operand must act as both a source and destination

one operand can come from memory

complex addressing modes e.g., “base or scaled index witt38 bit displacement”
e Saving grace:

— the most frequently used instructions are not too difficulbaild
— compilers avoid the portions of the architecture that avev sl

e 8 general purpose registers plus 8 special purpose

e Lots of restrictions and caveats

Quotes about the 1A-32

e “This history illustrates the impact of the ‘golden handsubf compatibility
e “adding new features as someone might add clothing to a pldukg”

e “an architecture that is difficult to explain and impossitddove”

e “what the 80x86 lacks in style is made up in quantity, makingeaautiful from the right

perspective”

It's worth a read through the section.

13

