
Computer Science 324
Computer Architecture
Mount Holyoke College
Fall 2007

Topic Notes: Memory Hierarchy

Our next topic is one that comes up in both architecture and operating systems classes: memory
hierarchies.

We have thought of memory as a single unit – an array of bytes orwords. From the perspective of
a program running on the CPU, that’s exactly what it looks like.

In reality, what we think of as “main memory” is just part of a hierarchy:

Large, slow, cheap

Regs

Cache

Main Memory

Disk/Virtual Memory

Tape, Remote Access, etc.

Small, fast, expensive

We have already considered how the use of registers is different from main memory, in particu-
lar for the MIPS ISA, where all computation must operate on values from, and store results in,
registers.

From P&H, we have the technologies, access times, and costs as of 2004 for these types of memory:

Technology Access time Cost per GB

SRAM 0.5-5 ns $4000-10,000
DRAM 50-70 ns $100-200

disk 5-20 ms $0.50-2

For our last couple of major topics, we will consider

• the layer (or layers, in most cases) ofcache: faster memory between registers and main
memory

• virtual memory, which allow us to pretend to have more memory than we really have by
using disk space to store parts of memory not currently in use

Caches

CS 324 Computer Architecture Fall 2007

We have noted from time to time in the course that memory access is very slow compared to
registers and the ALU.

In reality, the difference between processor speeds and memory speeds is even greater than we
have considered and growing.

• For decades, CPU performance (clock speed) doubled every 18-24 months

• Memory speeds have increased linearly, at best

• Improvements in memory technology have focused on increased density rather than speed:
address space increases by 1.5 bits per year—a factor of fourevery 18-24 months

Caches help keep the necessary values close to the CPU for faster access:

• A small, fast memory is placed between the CPU and main memory

• whenever a value is needed for an address, we first look for it in the cache – only if it is not
there do we look to main memory and copy it to cache

• when we write a value, we write it to cache, then update it in memory later, concurrently
with other computations

• terminology: data found in cache is acache hit, not found is acache miss

The cache is anassociative memory, where we can look up a memory value by its address in a
table.

D

CPU

Cache

Memory (slow!)

key value

Associative
memory

A

The key is the address, value is the contents of memory at thataddress.

When the CPU makes a memory request, the cache needs to find the appropriate value very quickly.

• Ideally, we can look up the key instantly

• Realistically, there is a hash function that maps addresses to possible cache entries

• Depending on the hash function, we may or may not need to storethe key itself in the cache

2

CS 324 Computer Architecture Fall 2007

• The hash function depends on how we organize the cache

• Generally there is an organization intolinesof cache – groups of addresses that are stored
(and read/written) in the cache together

– typical: 16 or 32 bytes

– this works well with the idea of a wider memory bus (recall discussion when we built
memory circuits and organized it into banks)

Direct Caches

The first cache organization we consider allows for direct access to a cache line from memory by
breaking the address down into three parts:

101 10111 1011

• the first chunk is the key

• the middle chunk is the cache line (orcache addressor index)

• the last chunk specifies the entry within the cache line

In this case, we would have 16 addresses per line in the cache,and 32 lines of cache.

1

8
of our memory actually fits in cache, but each address, if it isin the cache, is in a specific location.

• we need only check if the entry at the desired line is the actual address we want – this is a
fast comparison

• if the desired line is currently in the cache, we just use it

• if not, we have to go get it, evicting the old value from the cache line

• if we repeatedly use values from two different parts of memory that happen to map to the
same cache line, we will have a lot of cache misses

Fully Associative Caches

Here, a cache entry is not restricted to a single location. Infact, it can be in any line.

We break our address into only two chunks for a fully associative cache:

10110111 1011

The key is all bits above the number of bits to specify an entrywithin a line.

3

CS 324 Computer Architecture Fall 2007

• when looking up, we have to checkeveryentry in the cache to see if it’s in there

• this sounds like a search (think: expensive), but we can build a circuit for this

• if we find it, use it, otherwise, we need to go get it

• But then which line do we replace? It can go anywhere!

We can consider many approaches to select a “victim” for eviction –

1. LRU – least-recently used

2. LRU approximations

3. random

4. saturating counters – keep track of frequency of recent access

5. replace non-dirty (unmodified) lines

The decision must be fast but a poor decision will lead to another cache miss in the near
future – also expensive

• we are much less susceptible to an unfortunate access pattern compared to direct mapping
since the associativity means flexibility

Set Associative Caches

In between the other approaches – each address maps to a smallset of possible lines.

• for 2-way, each address could be in one of two places

• easier to check than in the fully associative case, but if we are using 3 or 4 lines repeatedly,
we will end up with lots of cache misses

• but still better off than the direct mapped

Almost definitely do lookups in parallel:

A hash

4

CS 324 Computer Architecture Fall 2007

There are tradeoffs and all three approaches (and various levels of associativity within set associa-
tive) are really used.

Cache Discussion

There are three ways that a memory value will fail to be found in cache:

1. acompulsorymiss—the first time a value is needed, it must be retrieved from memory

2. aconflictmiss—since our last access another value that maps to the same cache location has
evicted the value we want

3. acapacitymiss—the value we want has been evicted not because of a direct conflict, but
because it was the least recently used value

Notice that, looking at a stream of memory references, it is difficult to identify the reasons for
misses; they are equally difficult to avoid.

Some cache statistics:

• Most primary caches hold a small amount of data—8 to 32K bytes– amazingly this value
has been fairly constant for 40 years

• a good primary cache delivers better than 95% of requests

– Why? Locality, locality, locality.

– Spatial localityandtemporal locality– it’s why caches work

• missing 2% of requests on to a memory that is 50 times slower (and it is often much worse)
means the average access time is0.98 + 0.02 ∗ 50 = 1.98 cycles, or half of the desired speed
– we must have a highhit rate (i.e., lowmiss rate)

• Secondary (and tertiary) caches can be effective at reducing miss rate, but they must be much
larger: secondary caches might be 256K bytes or larger, while tertiary caches are measured
in megabytes

Cache management:

• instructions are read-only – motivation forHarvard cache, where data and instructions are
separated

– avoid need to worry about write policies, at least for instructions

– another possibility: atrace cache

∗ cache the equivalent of micro-operations

5

CS 324 Computer Architecture Fall 2007

∗ Intel Pentiums do this to cache the RISC equivalents of the actual CISC instruc-
tions

– alternative:unifiedcache, containing both instructions and data

• data is mutable (usually) – need to keep track ofdirty lines – those that have been changed

• if a value has changed, it must be written back to memory some time (at least before it gets
evicted)

• the line never changes, no need to write it back – avoid unnecessary writebacks?

• Write policies:

– Write-through – memory is always written back but usually only when the MMU is not
otherwise busy

– Write-back – memory is updated only when the line is evicted

– probably need some sort of “write queue” in either case

– and what if you write before you read? (variable initialization)

∗ read it into the cache first?

∗ perhaps “write-around” for writes to lines not in cache?

∗ how likely are we to be reading them soon anyway?

Another technique:victim cache

• a place to keep recently evicted lines

• these are good candidates for reinsertion

• at least keep them here until written back

• especially useful for direct-mapped caches, can benefit setassociative caches

Multiprocessor issues –cache coherency

For example, the Power 4 architecture has 4 cores, each with its own L1 cache, but the 4 share an
L2 cache

• if a line is in 2 L1 caches, how do we mantain consistency?

• do lines in an L1 also exist in L2?

6

CS 324 Computer Architecture Fall 2007

Handling Cache Misses in the Datapath and Control

When we have a cache hit, our datapath and control (be it multi-cycle or pipelined) works as we
saw previously.

In the case of a cache miss, a requested memory value (instruction or data) is not immediately
available. We must wait an appropriate amount of time for thevalue to be placed into the cache
before we can obtain the desired value.

The basic idea in either datapath/control approach is to stall the processor when a cache miss is
detected. We wait for the memory values to populate the appropriate cache line, then restart the
instruction in question.

Virtual Memory
When the memory requirements of a program (or the sum of the requirements of the many pro-
grams which may be running on a system) are larger than physical memory, we depend onvirtual
memory.

We will just consider the basics – look back on or forward to Operating Systems for a more thor-
ough discussion.

• Programs generate (that is, the CPU puts onto the address bus)logical addresses

• Each program in a multiprogrammed environment may have its own privateaddress space

• Even a single program can have a larger address space than theavailable physical memory

• Basic goal: assign logical addresses to physical addresses,translate logical addresses to
physical addresses when accessed

• Logical memory is broken intopages, usually around 4K in size, often stored on secondary
store (disk)

• Pages are brought intoframesof physical memory of the same size

7

CS 324 Computer Architecture Fall 2007

(pages)

physical
memory
(frames)

logical
memory

• Operating system keeps track of a map called apage table

• Entries in a page table either give a disk address for a non-resident page or the information
to translate the logical address to the appropriate physical address

8

CS 324 Computer Architecture Fall 2007

• Accessing a non-resident page causes apage fault

– analogous to a cache miss but much more costly

– bring in the page of logical memory into a frame of physical memory, possibly displac-
ing a page currently in physical memory

– takes long enough that the OS is likely to let a different process use the CPU while the
page fault is being serviced

• Looking up page table entries is expensive (it is, after all,an additional memory access for
each “real” memory access), and often is supported by special hardware

• Specifically, we usually keep a (very) small cache of translations called atranslation looka-
side bufferor TLB that is responsible for servicing a majority of lookup requests

9

CS 324 Computer Architecture Fall 2007

A TLB hit is still more expensive than a direct memory access (no paging at all) but much
better than the two references from before

A TLB is typically around 64 entries: tiny, but good enough toget a good hit rate (locality
is your friend!)

• In large systems, the page table might not be memory resident, which leads to things like
multilevel page tables, inverted page tables, and other ideas

10

