
Computer Science 324
Computer Architecture
Mount Holyoke College
Fall 2007

Topic Notes: Exceptions and Interrupts

Exceptions and Interrupts
We have seen how to build a relatively simple datapath and control system. The same ideas and
techniques can be used to build computers that implement a more complete instruction set, such as
the full MIPS ISA.

Our implementation so far assumes that everything will go asplanned.

• all instructions are valid

• arithmetic operations complete correctly

• all data is immediately available

• the operating system has not yet become involved

Conditions that cause an “unusual” operation – one that does not simply proceed to the next in-
struction specified by thePC – are calledexceptions or interrupts.

Our text uses the term “exception” for an event generated by the processor and “interrupt” for one
coming from outside. However, different texts and ISAs use different conventions. We will use the
terms pretty much interchangeably.

So far, there are only two things we have seen that can cause anexception: arithmetic overflow and
the attempted execution of an undefined instruction. We willsee others soon and consider them
when they arise.

Data Path Augmentation for Exceptions

The MIPS approach to handling exceptions involves several steps:

1. the address of the instruction that caused the exception is stored in a new register: theexcep-
tion program register or EPC

2. control is transferred to the operating system to take appropriate action by loading thePC
with a specified address

3. the OS handles the situation, which may involve



CS 324 Computer Architecture Fall 2007

(a) providing a service to the user program (e.g., reading some information from an I/O
device)

(b) handling an overflow

(c) stopping a user program that has executed an illegal instruction

4. if the offending program is allowed to continue, the OS restarts its execution based on the
value in theEPC

In the MIPS ISA, the OS is informed of the exception’s cause bystoring a value in an additional
registerCause.

Other systems use aninterrupt vector, which specifies different target addresses to be used by the
OS based on the reason for the interrupt/exception.

We will consider the MIPS approach, and look at how to augmentour data path and control to
handle the two exception types that could happen in our MIPS subset.

The two additional registers are, as mentioned above:

1. EPC: holds the 32-bit address of the instruction that was being executed when the exception
occurred

2. Cause: records the reason for the exception

For our simplified system, there are only two causes. We will store a 0 inCause for an undefined
instruction and a 1 for an arithmetic overlow.

This also requires some new control lines and options:

• EPCWrite controls the writing ofEPC

• CauseWrite controls the writing ofCause

• IntCause determines whether to store a 0 or a 1 inCause

• a 4th option forPCSource to load thePC with the OS exception handling code address:
8000018016.

• a new ALU output to computePC-4 since we want to store the address of the currently
executing instruction, and we will detect the exception conditions after we have already
incremented thePC – fortunately this is easy, since we can already feed in thePC to the
first ALU input, we can already feed in the constant 4 to the second ALU input, and we can
already force the ALU to perform subtraction

Figure 5.39 shows the data path with these enhancements.

2



CS 324 Computer Architecture Fall 2007

Control Augmentation for Exceptions

Next, we need to augment our control to implement this. For the finite state control, we need to
make two additions:

1. a new state where we go if the instruction is something other than one of our defined instruc-
tions when transitioning from state 1

2. a new state where we go from state 7 if the ALU operation results in overflow

Figure 5.40 shows the finite state control with these additions.

The control lines in the new states are as we would expect.

The transition from 1 to 10 in the illegal instruction case isfairly straightforward. We simply make
10 the next state for all undefined opcodes.

The transition from 7 to 11 is more complicated – we need to look back at the ALU and note that
it has an additional output line calledOverflow. Our control in this case needs to examine the
value of this line when determining whether to proceed to 7 ona successful ALU operation or to
11 to handle the overflow condition.

There are complications we are not addressing as well – the MIPS ISA states that an instruction
that causes an overflow should have no effect. However, we have already written the result to a
register in state 7. So this is a case where we really need to check overflow of the ALU result
(from the previous cycle) before doing our write back operation, but this isn’t the way the finite
state control works. We won’t worry about this for now.

If we are using a microprogrammed control, the changes are similar.

• our microinstruction size increases by two bits for the two new control lines that need to be
specified

• our dispatch table for instruction decode simply needs to beset to the address of the microin-
struction that deals with the bad instruction case

• we would also need to add some capabilities to the microprogrammed control to branch
conditionally based on the overflow line, possibly adding a 4th case to the sequencing where
we define a conditional jump based on whether theOverflow flag is set.

We will return to the ideas of exception handling as they comeup in our remaining topics.

3


