
Computer Science 324
Computer Architecture
Mount Holyoke College
Fall 2007

Topic Notes: Digital Logic

Our goal for the next few weeks is to paint a a reasonably complete picture of how we can go from
transistor technology up to all of the components we need to build a computer that will execute
machine code such as that of the MIPS ISA.

Basic Physics
At the lowest level, current computers are just electrical circuits.

We will only look at the most basic ideas from physics to describe how some of the basic digital
logic building blocks can be constructed.

Resistors

In nature, electrical potential wants to equalize. To maintain a potential, the electrons must be
separated by an insulating material. A conductive materialwill allow the potential to equalize.

In an electrical circuit, we place aresistor to establish a potential difference between points.

In a circuit, the electrons want to go from a power supply to ground, but the resistor stops this from
happening too fast.

electron flow

supply

ground

Typically, our power supplies will be +5V

If we put a wire to give a path around our resistor, we have a problem: we make a toaster. (elec-
tronics stuff: V=IR)



CS 324 Computer Architecture Fall 2007

Toaster!

supply

ground

We want to avoid conducting all of our electricity like that,so be careful.

For this class, we’ll want to make sure we have a path from supply to ground, but always with
resistance along the way. We won’t worry much about it beyondthat.

Transistors

The key device, invented in 1948, that allows us to build the logic circuits that we’re interested in
is thetransistor.

infinite−resistance

supply

gate sink
source

ground

gate potential >> 0
0−resistance wire

gate potential = 0

This is afield-effect transistor (FET). For physicists, this is a “continuous” device – a variable
resistor, maybe an amplifier.

For Computer Science, we only care about +5V or 0V, 1 or 0, true or false. (Really, it’s probably
0-1V is 0, 2-5V is 1, 1-2V is illegal.)

In this transistor, if the “gate is true” the transistor actslike a wire.

If the “gate is false” the transistor acts like a broken wire,one with infinite resistance.

The transistor has some semiconducting material at the gateand that causes a delay in the electron
flow.

This “gate delay” is small, but keeps us from building fastercomputers. We have to wait for the
electrons.

Modern computers will have 50-100 billion of these switches, which can be just a few atoms
across, allowing about 1 trillion “operations” per second.

2



CS 324 Computer Architecture Fall 2007

The Inverter

Consider this circuit:

gnd

+5V

output
gate
(input)

The transistor part becomes a0Ω or ∞Ω resistor, so the potential at “output” will be either 0V or
+5V, depending on the value of the “input” at the gate.

gate=0 means output=1 (+5V)
gate=1 means output=0 (0V)

This is an inverter!

oppositeamplified 
buffer
symbol

In the symbol, the triangle is for an “amplified buffer” and the circle on the tip means “opposite”
or “invert”.

The “buffer” just slows the signal down.

Since !!b=b, putting two inverters in series can be used to build the strength of a signal and slow it
down.

in out
0 1
1 0

3



CS 324 Computer Architecture Fall 2007

Constructing NOR and NAND
Now consider this circuit:

+5V

(input)

gnd

(input)

gnd

output

a b

What does this circuit do? We have two transistors.

Which wires are connected or broken when we present values of aand b on the input? What
happens to the potential?

a/b 0 1
0 1 0
1 0 0

This is an inverted OR – the NOR:¬∨ (not OR)

What if we put our two transistors in series?

gnd

+5V

output

a

b

4



CS 324 Computer Architecture Fall 2007

Now our output looks like this:

a/b 0 1
0 1 1
1 1 0

This is an inverted AND – a NAND:¬∧ (not AND)

Abstractions of Physical Gates
Our lowest level of abstraction is to take our transistor-based circuits and abstract to these physical
digital logic gates:

NAND gate NOR gate

We know how to build them, but no longer need to think about howthey work (except maybe on a
homework problem or an exam question).

We assume the existence of inverters, NAND, NOR gates and we use these to build other (more
complex) gates:

AND gate OR gate

Universality of Certain Gates
We can use these five gates to construct a variety of circuits.

Two of these gates areuniversal: NAND and NOR.

Any circuit that we can build with all 5 available can be builtwith only NAND or only NOR gates.

For example, if we wire the same signal to both inputs of a NAND:

5



CS 324 Computer Architecture Fall 2007

This is an inverter!

If you have only NAND gates, you can build an AND gate:

We can do similar things to build NOR, OR from NAND.

Also can construct all other gates out of only NORs. Left as an exercise. (hint: DeMorgan’s Laws)

Representing a Mathematical Function
Build a circuit to compute a given function:

input f(input)
000 0
001 0
010 0
011 0
100 0
101 1
110 1
111 1

To construct a circuit for this, take a set of AND gates, one for each “1” in the function, stick
inverters (represented just by little circles on the inputs) on the inputs that are 0.

Then hook up all the AND gate outputs to an OR gate, the output is the function.

For the above function:

6



CS 324 Computer Architecture Fall 2007

We can do this for any binary function!

For a function of ann-bit value as anm-bit value, we can constructm of these, and compute any
function we want (sqrt, sin, whatever).

We can probably reduce the number of gates needed compared tothis approach.

Circuit simplification, in general, is a very hard problem.

How about a circuit to compute exclusive OR from the other 5 gates?

Moreover, what is the fewest number of gates needed?

We can do this with the technique we used previously, make a truth table (note Gray code ordering):

a b out
0 0 0
0 1 1
1 1 0
1 0 1

7



CS 324 Computer Architecture Fall 2007

How about OR (kind of silly, yes, but we can do it):

a b out
0 0 0
0 1 1
1 1 1
1 0 1

8



CS 324 Computer Architecture Fall 2007

Of course, this seems pretty wasteful. Even if we didn’t justwant to use an OR gate, we could
compute the opposite function and invert:

How about implementing NAND?

a b out
0 0 1
0 1 1
1 1 0
1 0 1

Which goes directly to:

9



CS 324 Computer Architecture Fall 2007

We can save some inverters by havinga anda, b andb then only regular AND gates.

By doing this, we save two inverters. That’s good.

Of course, if we wanted to simplify a circuit for NAND in real life, we’d probably just use NAND...

The point: there are many cases where we will generate a circuit algorithmically and it won’t
generate the simplest circuit.

Multi-input Gates, Fan Out
We have seen multi-input gates. For AND, we can draw any number of inputs symbolically, put a
slash through the inputs with a wire to specify large numbers.

We draw these, but we actually buy chips that provide only 2-input gates.

We can construct a 3-way AND from 2 2-way ANDS.

We can construct a 4-input and from 3 2-way ANDs:

Is this bad? Well, it’s not natural, looks kind of like a loop,cascading through the gates.

A “tree-like” structure is better. At least, there are only 2gate delays before we have the answer.

Even so, we are stuck withn − 1 2-way gates to implement ann-way gate.

Here, the difference in gate delay isn’t such a big deal, but think about the 64-input AND. Approach

10



CS 324 Computer Architecture Fall 2007

1 leads to a circuit with 63 gate delays, while the tree approach has only 6.

So when we’re constructing ann-input gate, we will have

• n − 1 gate equivalents charged to

1. transistor budget

2. real estate on the chip/board

• andO(log n) gate delay

Other things to worry about:

A wire in our circuit must be driven by +5V input, GND, or the output of some gate.

“Fan in” is not a good idea.

This could be a short circuit – avoid it. Bad for your grade on a circuit design and bad for the gates,
etc that might get a signal coming in the wrong way.

It’s called a “wire or” since if it does what we intend, it would be an OR gate.

“Fan out” is allowed but is limited by the gate power.

The practical limit is 4 or 5 other gates powered by the outputof a gate.

High gate load will mean weak signals.

11



CS 324 Computer Architecture Fall 2007

A solution: bigger, stronger gates, but bigger, stronger gates are slower (more gate delay).

Simplification of Circuits
We looked at how we could use AND, OR, and NOT gates to compute any function ofn inputs.

We already saw one trick to simplify. If we use the inverse of an input more than once, we can
invert the signal once and connect the inverted signal to allof the places that want that input.

We can also notice quite easily that if our truth table for thefunction being computed has more 1’s
than 0’s, we might want to compute the inverse of the functionand invert the output at the end.

But there’s certainly more we can do.

Let’s consider this function:

a b c f
0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 0
1 1 1 1

We could draw a circuit to do this, but it’s going to be fairly complex. 5 3-way AND gates feeding
into a 5-way OR gate, and 3 inverters.

To consider how we can simplify this, let’s write this in a “sum of products” form:

f = abc + abc + abc + abc + abc

where “multiplication” represents an AND operation, and “addition” represents an OR operation.

But we can notice some things about this expression that will allow us to simplify it. Note that
between the termsabc andabc that if a = 0 andb = 1, it doesn’t matter whatc is, the result is
always 1. So we can effectively cancel out thosec’s:

f = ab + abc + abc + abc

Same thing whena = 1 andb = 0. c doesn’t matter. So we can simplify further:

f = ab + ab + abc

12



CS 324 Computer Architecture Fall 2007

This leads to a simpler circuit.

But we can do even better with the subtle observation that we can combine the same term more
than once. Also note in our original expression that whena = 1 andc = 1, b doesn’t matter. So we
can leave outb from our last term and reduce the size of one of our AND gates inthe corresponding
circuit:

f = ab + ab + ac

Karnaugh Maps

A mechanism to perform these simplifications was proposed in1953 by Karnaugh.

We draw our truth table in an odd format:

1

AB

C 00 01 11 10

0

1

1 1

11

Note the odd ordering of the patterns for AB – gray code. Thesediffer in only one bit.

Next, we look for pairs (or quads) of adjacent 1’s in the map, and circle them.

AB

C 00 01 11 10

0

1

1 1

111

Each circle encompasses two (or 4 or more) outputs that can becombined, since they differ only
in one bit.

We can then choose a subset of these circles that “cover” all of our 1’s with circles (even if they’re
just the one square), and we have a simplified sum-of-products expression that will lead to a simpler
circuit.

We can cover a 1 with more than one circle, but there’s no need to cover multiple times.

So in this case, we have several options. The simplest options:

13



CS 324 Computer Architecture Fall 2007

ac + ab + ac

or

ac + bc + ac

just as we figured out before.

We can consider larger examples: a 4-input function that leads to a 4x4 K-map.

Note that we can circle groups of 4, 8.

CD

00 01 11 10

00

01

AB

11

10

1 1

1 1 1

1

1

1

1 1

1

This one corresponds to

f = c + ab + abd

CD

00 01 11 10

00

01

AB

11

10

1

11

1

1 1

1

1

This one corresponds to

14



CS 324 Computer Architecture Fall 2007

f = bd + ac + abcd

In some cases, we don’t care about certain combinations of input. For example:

a b c f
0 0 0 1
0 0 1 1
0 1 0 x
0 1 1 0
1 0 0 x
1 0 1 0
1 1 0 1
1 1 1 x

The x entries indicate those input value that we don’t care about.They can be 0 or 1: whatever
makes our circuit simpler.

BC

A 00 01 11 10

0

1 1x

1

x

1 x

We can choose to cover (or not), the don’t care entries in our K-map.

The circling above corresponds to

f = ab + c

Multiplexers and Demultiplexers
Suppose we have a shared telephone line – we want any one of a number of incoming lines to be
connected to an output line.

We want this device:

15



CS 324 Computer Architecture Fall 2007

phi(output)MUX

d00

d01

d10

d11

A0 A1
address

lines
da

ta
 li

ne
s

A multiplexer – picks which consumer of a resource gets to consume it.

If A=00, we wantd00 connected toφ, others disconnected, etc.

How can we implement this with the tools we have so far?

Let’s first think about how an AND gate can be used as a contol device:

If the control is high (1), the input is passed on to the output.

With this in mind, we can build a circuit for the multiplexer:

16



CS 324 Computer Architecture Fall 2007

The opposite of this is thedemultiplexer

phi00

DMUXdata

A1 A0

phi01

phi10

phi11

And we can do it as such:

17



CS 324 Computer Architecture Fall 2007

Encoders and Decoders
A decoder selects one of several output lines based on a coded input signal.

Typically, we haven input and2n output lines.

A 2-to-4 decoder:

a b 0 1 2 3
0 0 1 0 0 0
0 1 0 1 0 0
1 1 0 0 1 0
1 0 0 0 0 1

A circuit to do it:

18



CS 324 Computer Architecture Fall 2007

The opposite of this is theencoder, where one of several input lines is high, and the output is a
code.

Typically, an encoder has2n input lines andn output lines.

A 4-to-2 encoder (assuming only legal inputs – where exactlyone input line is high):

a3 a2 a1 a0 φ1 φ0

0 0 0 1 0 0
0 0 1 0 0 1
0 1 0 0 1 0
1 0 0 0 1 1

This is a weird situation, as there are really 16 input combinations, but only 4 are considered
“legal”. Assuming no illegal inputs, we can construct a circuit:

19



CS 324 Computer Architecture Fall 2007

This is not especially satisfying. Our outputs don’t even depend ona0!

More likely, we would want what is called apriority encoder, where there is a priority of inputs,
making all combinations legal. We could give priority to either low-numbered or high-numbered
inputs.

For low input priority, we’d have this truth table:

a0 a1 a2 a3 φ0 φ1

1 1 1 1 0 0
1 1 1 0 0 0
1 1 0 1 0 0
1 1 0 0 0 0
1 0 1 1 0 0
1 0 1 0 0 0
1 0 0 1 0 0
1 0 0 0 0 0
0 1 1 1 0 1
0 1 1 0 0 1
0 1 0 1 0 1
0 1 0 0 0 1
0 0 1 1 1 0
0 0 1 0 1 0
0 0 0 1 1 1

Adders
Our next goal is to develop circuits to do addition. Ultimately, we would like to be able to add 8-
or 16- or 32-bit 2’s complement numbers together, but to start, we’ll try adding two bits together.

20



CS 324 Computer Architecture Fall 2007

Half Adders

Recall this table from our discussion of binary arithmetic:

+ 0 1
0 00 01
1 01 10

So if I have two one-bit values, a and b, I can get their sum and the carry out with this circuit:

This is called ahalf adder. We represent it with this symbol:

S

1/2

a b

C

This in itself isn’t especially useful, but we’ll use this asa building block for what we really want...

Full Adders

Thefull adder:

21



CS 324 Computer Architecture Fall 2007

(2’s place)

a b

+

S = a+b+Cin (sum bit/1’s place)

CinCout

This addsa andb, two one-bit values, plus a carry in, to produce a sum bitS and a carry out bit
Cout.

2 bits is enough to hold the sum, since the range of results is 0-3.

We can construct this from two half adders:

1/2

a

Cout

b

Cin
S

C

C

S

1/2

Still not especially useful, but these can be used to build a multi-bit adder. For example, a 4-bit
adder.

Ripple Carry Adder

22



CS 324 Computer Architecture Fall 2007

S0

+ + + +

b2 a2 b1 a1 b0 a0a3b3

C 0

S1S3 S2

This is called aripple carry adder, since the carry bits ripple along through the circuit.

Think about how the carry is propagated sequentially and hasto travel down the chain.

For ann-bit ripple carry adder, we haveO(n) gates and this requiresO(n) gate delays to get the
right answer (for sure).

Think about how this works. It works for 2’s complement!

This has relatively poor performance because of the ripple aspect of it, but it is actually used. We
just need to make sure we wait long enough before trusting theanswers.

We can extend this to any number of bits, but note that it is expensive in both the number of gates
and in gate delay.

Subtractors

We could consider building a circuit to do subtraction, but we have these adders that can deal with
2’s complement numbers. We can use this to build a subtractor.

In fact, we can do this just by augmenting our 4-bit adder withone extra input.

b0

XOR XOR XOR XOR

4−bit adder

C

a3 a2 a1 a0

S2S3 S1 S0

b3 b2 b1

The control lineC is called the subtract/add line.

23



CS 324 Computer Architecture Fall 2007

WhenC is 1, this computesa − b, when it’s 0, it computesa + b.

Why does this work?

Recall that for 2’s complement, we get -x from x by inverting the bits and adding 1.

a − b ≡ a + (−b) ≡ a + (b + 1) ≡ (a + b) + 1

If C is high, allb bits will be inverted by the XOR gates and the entire 4-bit adder’s carry-in line
will be 1 (taking care of the second part).

Aside on how XOR is a “not equals gate” and the control line makes them function as inverters
when it (C) is high.

We have built a general-purpose adder.

Speeding Up an Adder

Let’s see what happens if we break ourn-bit adder in half.

We can add 2n
2
-bit numbers (in parallel) and combine them into our answer.

We just have to think about what happens when the bottom half results in a carry out.

Consider this:

24



CS 324 Computer Architecture Fall 2007

Cout (maybe)

n/2−bit
adder

...

n/2−bit
adder

...

n/2−bit
adder

...

a(
n/

2−
1)

b(
n/

2−
1)

a(
n−

1)
b(

n−
1)

b(
n/

2)
a(

n/
2)

b(
n−

1)
a(

n−
1)

a(
n/

2)
b(

n/
2)

b0

0

1

n/2 MUXs

n/2

Cout 0

S(n/2−1)...S0

S(n−1)...S(n/2) (maybe)

n/2

n/2

n/2

S(n−1)...S(n/2) (correct!)

MUX

S(n−1)...S(n/2) (maybe)

a0

Cout (correct!)

Cout (maybe)

We compute the bottomn
2

bits for sure and easily.

We compute both possibilities for the topn

2
bits, one with carry in, one without.

Then, when the carry in arrives from the bottom half, we use a set of n

2
+ 1 MUXs and use the

carry out from the bottom half to select which input (the top bits plus carry out) to pass through!

Notes:

• we can make the low-order one a few bits smaller, so the carry out is already delivered to the
MUXs when the high-order ones finish

• This costs more space (bigger circuit) but saves time

25



CS 324 Computer Architecture Fall 2007

• We can do this recursively! But we don’t need to create the whole tree to do it. We only
need twice the space to do this.

• Difficulties: hard to lay out on the chip

• Realistically, we do ripple-carry addition if the size is 16 bits or less. Likely to break it down
recursively for larger operand sizes

26


