Computer Science 324
M [] (Computer Architecture
_— Mount Holyoke College
MOUNT HOLYOKE COLLEGE Fa” 2007

Topic Notes: Digital Logic
Our goal for the next few weeks is to paint a a reasonably cetalicture of how we can go from

transistor technology up to all of the components we neediiid la computer that will execute
machine code such as that of the MIPS ISA.

Basic Physics
At the lowest level, current computers are just electrigaluits.

We will only look at the most basic ideas from physics to déschow some of the basic digital
logic building blocks can be constructed.

Resistors

In nature, electrical potential wants to equalize. To naimt potential, the electrons must be
separated by an insulating material. A conductive mateiilhbllow the potential to equalize.

In an electrical circuit, we placerasistor to establish a potential difference between points.

:

In a circuit, the electrons want to go from a power supply twugud, but the resistor stops this from
happening too fast.

supply

electron flow

1

— ground

Typically, our power supplies will be +5V

If we put a wire to give a path around our resistor, we have alpm: we make a toaster. (elec-
tronics stuff: V=IR)

CS 324 Computer Architecture Fall 2007

supply

Toaster!
— ground

We want to avoid conducting all of our electricity like that be careful.

For this class, we’ll want to make sure we have a path from Iguggpground, but always with
resistance along the way. We won’t worry much about it beyibadl

Transistors

The key device, invented in 1948, that allows us to build tggd circuits that we're interested in
is thetransistor.

___ supply
gate | sink
— source
_|l ground 1 1

gate poténtial >>(0 gate poténtial =0
O-resistance wire infinite—resistance

This is afield-effect transistor (FET). For physicists, this is a “continuous” device — a variable
resistor, maybe an amplifier.

For Computer Science, we only care about +5V or 0V, 1 or 0, trifalse. (Really, it's probably
0-1Vis 0, 2-5Vis 1, 1-2V is illegal.)

In this transistor, if the “gate is true” the transistor dite a wire.
If the “gate is false” the transistor acts like a broken waee with infinite resistance.

The transistor has some semiconducting material at theagatéhat causes a delay in the electron
flow.

This “gate delay” is small, but keeps us from building fastemputers. We have to wait for the
electrons.

Modern computers will have 50-100 billion of these switchetich can be just a few atoms
across, allowing about 1 trillion “operations” per second.

CS 324 Computer Architecture Fall 2007

The Inverter

Consider this circuit:

+5V

output
gate ‘
(input) —

— gnd

The transistor part become$)8 or cof? resistor, so the potential at “output” will be either OV or
+5V, depending on the value of the “input” at the gate.

gate=0 means output=1 (+5V)

gate=1 means output=0 (0V)
; \

amplified ~ OPPOSite
buffer
symbol

This is an inverter!

In the symbol, the triangle is for an “amplified buffer” ancktbircle on the tip means “opposite”
or “invert”.

The “buffer” just slows the signal down.

Since !!b=Db, putting two inverters in series can be used tll e strength of a signal and slow it
down.

CS 324 Computer Architecture Fall 2007

Constructing NOR and NAND

Now consider this circuit:

+5V

output

a b
(input) —_ (input) —_

—+ gnd — gnc

What does this circuit do? We have two transistors.

Which wires are connected or broken when we present valuesaafieb on the input? What
happens to the potential?

a/b
0
1

(ol o)
O Ol

This is an inverted OR — the NOR:iv (not OR)

What if we put our two transistors in series?

+5V

output

o
-

CS 324 Computer Architecture Fall 2007

Now our output looks like this:

=)
P RO
O Rk

This is an inverted AND — a NAND=A (not AND)

Abstractions of Physical Gates

Our lowest level of abstraction is to take our transistadabcircuits and abstract to these physical
digital logic gates:

NAND gate NOR gate

We know how to build them, but no longer need to think about Husy work (except maybe on a
homework problem or an exam question).

We assume the existence of inverters, NAND, NOR gates andse¢hese to build other (more
complex) gates:

AND gate OR gate

Universality of Certain Gates

We can use these five gates to construct a variety of circuits.

Two of these gates atmiversal: NAND and NOR.

Any circuit that we can build with all 5 available can be bwith only NAND or only NOR gates.

For example, if we wire the same signal to both inputs of a NAND

CS 324 Computer Architecture Fall 2007

This is an inverter!

If you have only NAND gates, you can build an AND gate:

We can do similar things to build NOR, OR from NAND.

Also can construct all other gates out of only NORs. Left asxmase. (hint: DeMorgan’s Laws)

Representing a Mathematical Function

Build a circuit to compute a given function:

input | f(input)
000 0

001
010
011
100
101
110
111

PP, OOOO

To construct a circuit for this, take a set of AND gates, oneglach “1” in the function, stick
inverters (represented just by little circles on the inpatsthe inputs that are O.

Then hook up all the AND gate outputs to an OR gate, the ougpthiel function.

For the above function:

CS 324 Computer Architecture Fall 2007

II"I."'l "|II

We can do this for any binary function!

For a function of am-bit value as ann-bit value, we can construet of these, and compute any
function we want (sqrt, sin, whatever).

We can probably reduce the number of gates needed compated &pproach.
Circuit simplification, in general, is a very hard problem.

How about a circuit to compute exclusive OR from the othertega

Moreover, what is the fewest number of gates needed?

We can do this with the technique we used previously, makglatable (note Gray code ordering):

a b out
0 0/ 0
0 1] 1
1 1| 0
1 0| 1

CS 324 Computer Architecture Fall 2007

How about OR (kind of silly, yes, but we can do it):

Q
O

out

P, OO

ORrRrRO
Rk RO

CS 324 Computer Architecture Fall 2007

Of course, this seems pretty wasteful. Even if we didn't juant to use an OR gate, we could
compute the opposite function and invert:

_@. .
b
How about implementing NAND?
a bjout
0 0| 1
0 1| 1
1 1,0
1 0|1

Which goes directly to:

CS 324 Computer Architecture Fall 2007

We can save some inverters by havingnda, b andb then only regular AND gates.
By doing this, we save two inverters. That’s good.
Of course, if we wanted to simplify a circuit for NAND in redfd, we'd probably just use NAND...

The point: there are many cases where we will generate aitcalgorithmically and it won't
generate the simplest circuit.

Multi-input Gates, Fan Out

We have seen multi-input gates. For AND, we can draw any namiieputs symbolically, put a
slash through the inputs with a wire to specify large numbers

We draw these, but we actually buy chips that provide onlg#st gates.

We can construct a 3-way AND from 2 2-way ANDS.

We can construct a 4-input and from 3 2-way ANDs:

Is this bad? Well, it's not natural, looks kind of like a loa@scading through the gates.

A “tree-like” structure is better. At least, there are onlgde delays before we have the answer.
Even so, we are stuck withh— 1 2-way gates to implement arrway gate.

Here, the difference in gate delay isn’t such a big deal,Hioktabout the 64-input AND. Approach

10

CS 324 Computer Architecture Fall 2007

1 leads to a circuit with 63 gate delays, while the tree apgrdes only 6.

So when we're constructing aninput gate, we will have

e n — 1 gate equivalents charged to

1. transistor budget
2. real estate on the chip/board

e andO(logn) gate delay

Other things to worry about:
A wire in our circuit must be driven by +5V input, GND, or thetput of some gate.

“Fan in” is not a good idea.

This could be a short circuit — avoid it. Bad for your grade oireuit design and bad for the gates,
etc that might get a signal coming in the wrong way.

It's called a “wire or” since if it does what we intend, it walibe an OR gate.

“Fan out” is allowed but is limited by the gate power.

The practical limit is 4 or 5 other gates powered by the outpat gate.

High gate load will mean weak signals.

11

CS 324 Computer Architecture Fall 2007

A solution: bigger, stronger gates, but bigger, strongéegare slower (more gate delay).

Simplification of Circuits
We looked at how we could use AND, OR, and NOT gates to computéuauation ofn inputs.

We already saw one trick to simplify. If we use the inverse mfirgput more than once, we can
invert the signal once and connect the inverted signal tofalie places that want that input.

We can also notice quite easily that if our truth table forftinection being computed has more 1's
than 0's, we might want to compute the inverse of the funcdiod invert the output at the end.

But there’s certainly more we can do.

Let’s consider this function:

PRPRPRPRPROOOOD
PR OORRFROOoT
PORFRORFROR OO
RPORRRREROO-

We could draw a circuit to do this, but it's going to be fairlgroplex. 5 3-way AND gates feeding
into a 5-way OR gate, and 3 inverters.
To consider how we can simplify this, let’s write this in a fswf products” form:

f = abe + abc + abc + abc + abe
where “multiplication” represents an AND operation, anddaion” represents an OR operation.
But we can notice some things about this expression that Wellvaus to simplify it. Note that

between the term&bc andabc that if « = 0 andb = 1, it doesn’t matter what is, the result is
always 1. So we can effectively cancel out the'se

f = ab + abc + abc + abe
Same thing when = 1 andb = 0. ¢ doesn’t matter. So we can simplify further:

f =1ab+ ab+ abe

12

CS 324 Computer Architecture Fall 2007

This leads to a simpler circuit.

But we can do even better with the subtle observation that wecomnbine the same term more
than once. Also note in our original expression that wiaen1 andc = 1, b doesn’t matter. So we
can leave ouk from our last term and reduce the size of one of our AND gatésarcorresponding
circuit:

f=ab+ab+ac

Karnaugh Maps
A mechanism to perform these simplifications was proposd®%8 by Karnaugh.

We draw our truth table in an odd format:

AB
C 00 01 11 10

Note the odd ordering of the patterns for AB — gray code. Tlig$er in only one bit.

Next, we look for pairs (or quads) of adjacent 1's in the mayg, @rcle them.

AB
C 00 01 11 10

0 ﬁ
@

Each circle encompasses two (or 4 or more) outputs that caonrbbined, since they differ only
in one bit.

We can then choose a subset of these circles that “coverf allral’s with circles (even if they're
just the one square), and we have a simplified sum-of-preduxgiression that will lead to a simpler
circuit.

We can cover a 1 with more than one circle, but there’s no needver multiple times.

Soin this case, we have several options. The simplest gption

13

CS 324 Computer Architecture Fall 2007

ac + ab + ac
or
ac + be + ac

just as we figured out before.
We can consider larger examples: a 4-input function thaldéa a 4x4 K-map.

Note that we can circle groups of 4, 8.

CD
AB 00 01 11 10
/—I_\

ool|| 1 1

01[1 1 1 1j

This one corresponds to

f=c+ab+ abd
CD
AB 00 01 11

10
NP
01 u 1
11
ﬁﬂ (T !

This one corresponds to

14

CS 324 Computer Architecture Fall 2007

= bd + dc + abed

In some cases, we don’t care about certain combinationgat.if-or example:

P RPPRPPOOCOOYD
P RPOOPRFrREFROOT
P OPFRPOFRLPOFr,OOn
X POX OX R P

The x entries indicate those input value that we don’t care abdbey can be 0 or 1: whatever
makes our circuit simpler.

We can choose to cover (or not), the don’t care entries in earaf.

The circling above corresponds to

f=ab+¢c

Multiplexers and Demultiplexers

Suppose we have a shared telephone line — we want any one oft&enof incoming lines to be
connected to an output line.

We want this device:

15

CS 324 Computer Architecture Fall 2007

g doo __|
o dol —] MUX
§ dio | — phi(output)
di1l _ |
A0 Al
address
lines

A multiplexer — picks which consumer of a resource gets to consume it.
If A=00, we wantd,, connected t@, others disconnected, etc.
How can we implement this with the tools we have so far?

Let’s first think about how an AND gate can be used as a contotde

If the control is high (1), the input is passed on to the output

With this in mind, we can build a circuit for the multiplexer:

16

CS 324 Computer Architecture

Fall 2007

-DO1

ED'l'I :

The opposite of this is theemultiplexer

data

And we can do it as such:

DMUX

— phi0C
— phi01
— philC
— phill

Al A0

17

CS 324

Computer Architecture

Fall 2007

Encoders and Decoders

A decoder selects one of several output lines based on a coded inmatisig

Typically, we haven input and2™ output lines.

A 2-to-4 decoder:

A circuit to do it:

Rk, OOYD
Orrr oo

O OO o
O Or OoOr
OPFr OON
R O OO W

18

CS 324 Computer Architecture Fall 2007

The opposite of this is thencoder, where one of several input lines is high, and the output is a
code.

Typically, an encoder hax' input lines andh output lines.

A 4-to-2 encoder (assuming only legal inputs — where exawtlyinput line is high):

Q
w
Q
)
Q
=
Q
=)

e NeNe)
or oo
ocor o
coor
PR oo
P oPr oS

This is a weird situation, as there are really 16 input coratiams, but only 4 are considered
“legal”. Assuming no illegal inputs, we can construct a aitc

19

CS 324 Computer Architecture Fall 2007

This is not especially satisfying. Our outputs don’t evepeted onu!

More likely, we would want what is called@iority encoder, where there is a priority of inputs,
making all combinations legal. We could give priority tohait low-numbered or high-numbered
inputs.

For low input priority, we'd have this truth table:

Q
<)
S
=
Q
)
Q
w

PR RPOOOOOOOOCOOCOO%
POORRPRRPRROOOOOOOOS

OO0 O0OO0CO0OORRRRERRRRR
OCOO0ORRPRRPRFPOOOORRERELR
ORrPRPOORRFRPROORRLROORR
PORPROROROROROROLR

Adders

Our next goal is to develop circuits to do addition. Ultimgteve would like to be able to add 8-
or 16- or 32-bit 2's complement numbers together, but td,sta’ll try adding two bits together.

20

CS 324 Computer Architecture Fall 2007

Half Adders

Recall this table from our discussion of binary arithmetic:

So if | have two one-bit values, a and b, | can get their sum hadarry out with this circuit:

This is called éalf adder. We represent it with this symbol:

ab
|

1/2

C S

This in itself isn't especially useful, but we’ll use thisauilding block for what we really want...

Full Adders
Thefull adder:

21

CS 324 Computer Architecture Fall 2007

ab
|

Cout— + |—Cin
(2’s place)

S = a+b+Cin (sum bit/1’s place)

This addsz andb, two one-bit values, plus a carry in, to produce a sunmbhaind a carry out bit
CVout-

2 bits is enough to hold the sum, since the range of resultis 0

We can construct this from two half adders:

a b
|
Cl 1r
%— S Cin
Cl o
|
Cout S

Still not especially useful, but these can be used to buildutti+hit adder. For example, a 4-bit
adder.

Ripple Carry Adder

22

CS 324 Computer Architecture Fall 2007

S3 S2 S1 SO

This is called aipple carry adder, since the carry bits ripple along through the circuit.
Think about how the carry is propagated sequentially anddaavel down the chain.

For ann-bit ripple carry adder, we haw@(n) gates and this requirg3(n) gate delays to get the
right answer (for sure).

Think about how this works. It works for 2’s complement!

This has relatively poor performance because of the ripgpeet of it, but it is actually used. We
just need to make sure we wait long enough before trustingribevers.

We can extend this to any number of bits, but note that it i®agwe in both the number of gates
and in gate delay.

Subtractors

We could consider building a circuit to do subtraction, bethave these adders that can deal with
2's complement numbers. We can use this to build a subtractor

In fact, we can do this just by augmenting our 4-bit adder wiik extra input.

b3 b2 bl b0

O 1 I 1

a3xorR a2xorR alxorR aOxor

C

4-bit adder

S3 S2 S1 SO

The control lineC is called the subtractdd line.

23

CS 324 Computer Architecture Fall 2007

When(C'is 1, this computes — b, when it’s O, it computes + b.
Why does this work?

Recall that for 2’'s complement, we get -x from x by inverting thits and adding 1.

a—b=a+(-b)=a+b+1)=(a+b)+1

If C'is high, allb bits will be inverted by the XOR gates and the entire 4-biteatidcarry-in line
will be 1 (taking care of the second part).

Aside on how XOR is a “not equals gate” and the control line esathem function as inverters
when it (C) is high.

We have built a general-purpose adder.

Speeding Up an Adder

Let's see what happens if we break aeubit adder in half.

We can add Z-bit numbers (in parallel) and combine them into our answer.

We just have to think about what happens when the bottom éslfits in a carry out.

Consider this:

24

CS 324 Computer Architecture Fall 2007

”TTCT
T 88 &
£ cc ?Crz\c/ (CDG%
Cout (maybe) | ., _, . o Cout) nio—pit |0
adder adder

—~n/2
S(n-1)...S(n/2) (maybe) | S(n/2-1)...S0

—~ —~—
— NN
Ll =S
cCc C C

i
Cout (maybe) | n/2—pit
adder

n/2

— 1

S(n-1)...§(n/2) (maybe)

n/2

MUX n/2 MUXs

| /2

Cout (correct!) S(n—-1)...S(n/2) (correct!)

We compute the bottorf) bits for sure and easily.
We compute both possibilities for the tdpbits, one with carry in, one without.

Then, when the carry in arrives from the bottom half, we usetat? + 1 MUXs and use the
carry out from the bottom half to select which input (the tafg plus carry out) to pass through!

Notes:

¢ we can make the low-order one a few bits smaller, so the catris@lready delivered to the
MUXs when the high-order ones finish

e This costs more space (bigger circuit) but saves time

25

CS 324 Computer Architecture Fall 2007

e We can do this recursively! But we don’t need to create the wit@e to do it. We only
need twice the space to do this.

¢ Difficulties: hard to lay out on the chip

e Realistically, we do ripple-carry addition if the size is ligstor less. Likely to break it down
recursively for larger operand sizes

26

