Computer Science 324
M [] (Computer Architecture
_— Mount Holyoke College
MOUNT HOLYOKE COLLEGE Fa” 2007

Topic Notes: Bits and Bytes and Numbers

Number Systems

Much of this is review, given the 221 prerequisite.

Question: how high can you count on one finger?

That finger can either be up or down, so you can count 0,1 arnd tha
(Computer scientists always start counting at 0, so you shget used to that)
How high can you count on one hand/five fingers?

When kids count on their fingers, they can get up to 5.

But we have multiple ways to represent some of the numbersvys1 0,5 1's, 10 2’s, 10 3's, 5
4'sand 15.

We can do better. We have 32 different combinations of fingprsr down, so we can use them to
represent 32 different numbers.

Given that, how high can you count on ten fingers? (1024°¥

So let’s propose a way to do this. To keep this manageabldl assume 4 digits (hey, aren’t
fingers called digits too?) each of which can be a 0 or a 1. WeldHme able to represent 16
numbers. As computer scientists, we’'ll represent numbyers 0 to 15.

We havebinary numbers. Base 2. We'll call our digits heloés (short forbinary digts). 0 or 1.
That's all we have.

0 0000

1 0001
14 1110 E
15 1111 F

Just like in base 10, we have the 119){) place, the 10's10?) place, the 100's1(?) place, etc,
here we have the 1’s, 2's, 4’s, 8's, etc, following the powar2.

Note that we often think of things in 4-bit chunks. We can thigink in terms of base 16héx-
adecimal). But we don’t have enough numbers to represent that easilyesuse the letters A-F
to represent the values 10-15.

CS 324 Computer Architecture Fall 2007

We can have base-anything numbers, but the common onesuse’lire base 2, base@&fal, 3
binary digits), base 10 (used it?), base 16.

As computer scientists, you should be able to look at a 4tbitlver and be able to give its base-10
and base-16 values.

Since we will do so much work in binary, you will come to leahetpowers of 2 and sums of
common powers of 2.

1,2,4,8,16, 32,64, 128, 256, 512, 1024, 2048, 4096, 81BBA,EB2768, 65536.
Numbers like 49152 are common also (16384+32768).

And a power of 2, minus 1. Why? 12 — 1) is the biggest number we can represent inits.

Number representations

1. bit— 0= False, 1= True

2. byte (also octet) — term coined in 1956
Seehttp://www.google.com/search?hl=en&g=byte+1956
Often write as 2 hex digits, start with dollar sign or “Ox”:
$FE s = OxFE =254 =1111 1110

3. nibble/nybble (also semioctet) — 4 bits — “half a byte”

4. word — “the amount that a machine can handle with ease”
16 bits for most of our purposes
a.k.a.short

5. int
This is a C-language concept more than a machine concept
Can vary but usually 4 bytes=32 bits

6. long or “longword” — almost always 32 bits
232 = 4.3 billion possible values
You've heard of “32-bit” machines, like the Intel x86. Thisans they operate primarily on
32-bit values. More on what this all means later.
7. long long - 64 bits, a.k.a. “quadword”
204 values.1.84 x 10*°

8. VAX 128-bit value: “octaword”
2128 values.3.40 x 1038

CS 324 Computer Architecture Fall 2007

9.

10.

bit and byte significance

for bits within a byte, almost always most significant bit fhen the left, least significant
bit (Isb) on the right.

Same idea for bytes making up words, longwords, etc.

0110 1010, 0000 1100
MSB LSB

endianness — what order do we store these in, in memory

As long we we're consistent, it doesn't really matter whicaywt is set up. No significant
advantages or disadvantages.

(a) little (x86)

low memory

LSB
MSB

high memory

(b) big (Sun Sparc, 68K, PPC, IP “network byte order”)

low memory

MSB
LSB

high memory

Note that endianness becomes important when we think algohieging data among ma-
chines (networks). Network byte ordering (big endian) ipased for consistency.

The architecture we’ll be using, the MIPS, is bi-endian.dh @rocess data with either big
or little endianness.

See Example:
/home/jteresco/shared/cs324/examples/show _bytes

Character representations

Computers only deal with numbers. Humans sometimes dealletitrs. Need to encode letters
as numbers.

1. ASCII (1963) — American Standard Code for Information lok@mge

(a) fitsin byte

CS 324 Computer Architecture Fall 2007

(b) know:
space (32 = 0x20)
numbers ('0’-'9’ = 48-57 = 0x30-0x39)
lowercase letters ('a’-'z’ = 97-122 = 0x61-0x7a), 96+letp®s
uppercase letters (A-'Z’ = 65-90 = 0x41-0x5a), 64+letfers

(c) See:man ascii
2. Mild historical interest: EBCDIC (Extended Binary Coded eal Interchange Code) de-

veloped by IBM for punched cards in the early 1960s and IBM g8ks it on mainframes
today.

3. Unicode (1991), ASCII superset (for our purposes) — 2-bjgracters to support interna-
tional character sets

Memory model and pointers

We've talked about these bits and bytes and words, let's kiokow these are organized in a
computer’'s memory.

Aside: how much memory does your computer have? Your firsipeden? Your phone?

My first computer’'s memory was measured in kilobytes, my cot@pat home is measured in
megabytes, computers in our department are measured inytgga modern supercomputers can
have terabytes.

Exponents:

1. K(ilo) = 29 (2.4% more than0?)
. M(ega) =22°
. G(iga) =23

. T(era) =210

2
3
4
5. P(eta) 2%
6. E(xa) =250
7. Z(etta) =27
8

. Y(otta) =2%° (21% more tharn 0%*)

Know: every103® = 1000 is approximately2'° (log, 10 ~ 3).

Aside from aside: When you buy a hard drive, it's probably meag gigabytes as billions of
bytes no2?° of bytes.

A simplistic but reasonably accurate view of a computer'snogy:

4

CS 324 Computer Architecture Fall 2007

The value ofn determines how much memory you can have. Old systems: n=162%, modern
systems: n=32, new systems: n=64 and these are becomingormraon.

Think of this like a giant array of bytes.

We number these memory locations from @to— 1, and we can refer to them by this number.
When we store a memory location in memory, we are storipgiater.

The number of bits in a pointer determines how much memonbeaaddressed.

A pointer is just a binary value. If | have the value 0x10DEahahink of that as referring to
memory location $10DE.

Many modern systems let you access any byte, but this is mafLarement. Thaddressable unit
may be a word or a longword.

In these systems, we can address a larger memory in the santenof bits in the pointer size,
but can’t get (directly) at every byte.

Even on a byte-addressable system, if we are treating a aflojkes as a word or longword, they
may need to baligned on 2-byte or 4-byte boundaries.

Strings and arrays

1. Arrays are sequential chunks of store, indexed

2. Strings are arrays of chhogically terminated by zero (unless otherwise)

Unsigned Math

1. Unsigned addition — 4 bit numbers for simplicity
Just like addition of base-10 numbers, really.

0101 0101 1111
+0011 +0111 +1110

1000 1100 11101

Ack! The answer doesn't fit! There’s no place for that extria ¥ we've just added 15 and
14 and gotten 13 as our answer!

This is called aroverflow condition and the extra bit in the 16’s place is callechary out.

2. Unsigned multiplication
Sometimes they’ll fit, sometimes they won't.

CS 324 Computer Architecture Fall 2007

11 111
x100 x 11
00 111
00 111
11
10101
1100

Again, we have some overflow.

Signed Math
So far, we've ignored the possibility of negative numbers.

How can we represent a signed integer?

e Signed Magnitude
The simplest way is to take one of our bits and say it's a sign.
With n bits, we can now represent numbers frerf2"~! — 1) to (27! — 1)
positive numbers just use the unsigned representation
negative numbers use a 1 in thign bit then store the magnitude of the value in the rest.

positive | g X |
negative | 1 | -X |
sign

bit magnitude

Straightforward, makes some sense:

— You want to negate a value, you just switch its sign bit.
— You want to see if a value is negative, just look at the one bit

Note: two zeroes! +0 and -0 are distinct values.
Let’s see how the values fall, also.

CS 324 Computer Architecture Fall 2007

signed
value

unsigned value of represente

Disadvantage: direct comparison of two values differs leetwsigned and unsigned values
with the same representation. In fact, all negative numbeesn to be “bigger than” all
positive numbers. Ordering of negatives is reverse of therang of positives.

e Excess N (actually used)
Here, a value x is represented by the non-negative value x+N.

With 4-bit numbers, it would be Excess 8

1000 = 0 ()
0111 = -1
0000 = -8
1111 = 7

So our range of valuesis -8 to 7.
We eliminated the -0, plus the direct comparison works gicel

signed | +N
value

unsigned value of represente

-N
e 1's complement
“fairly frequently used in specific situations”
For non-negative x, use the unsigned representation of x
For negative x, use that-wise complementof -x
C tip: tilde operator will do a bitwise complement.
Examples:

CS 324 Computer Architecture Fall 2007

0 = 0000
-1 = 0001 = 1110
-0 = 0000 = 1111
-7 = 0111 = 1000
Issues:

— we have a -0

— we can compare within a sign, but otherwise need to check sign

signed
value

o .
unsigned value of represente

Range: -7 to +7.

e 2's complement (the standard & default)
For non-negative x, use the unsigned representation of x
For negative x, use the complement of -x, then add 1 (weird!)

0 = 0000

-0 = 0000+1 = 1111+1 = 0000
Now, that’s useful. 0 and -0 have the same representatidhgse’s really no -0.

1 = 0001

-1 = 0001+1 = 1110+1 = 1111

Also, very useful. We can quickly recognize -1 as it's theuealith all 1 bits.
Another useful feature: 1’s bit still determines odd/eveot true with 1's complement)

CS 324

signed
value

Computer Architecture Fall 2007

o .
unsigned value of represente

Like 1's complement, we can compare numbers with the sanmedsigctly, otherwise have
to check sign.

Note: Fortran had an if statement:

IF () GOTO 10,20,30

which translated to if | is negative, goto 10, if 0, goto 2Qpdfsitive, goto 30.

Easy to check these with 2’'s complement.

All 4-bit 2’'s Complement numbers:

0000
0001
0010
0011
0100
0101
0110
0111

~N~No ok wWwNEO

1000
1001
1010
1011
1100
1101
1110
1111

Note that the negation operation works both way. Take the@plement of a number then take
the 2's complement again, you get the number back.

Signed addition

How does signed addition work with 2’s complement?

3 0011 -3 1101 4 0100 -4 1100 4 0100
+4 0100 -4 1100 4 0100 -5 1011 5 0101
7 (00111 -7 (1)1001 8? (0)1000 -9? (1)0111 92 (0)1001

oK 8 | +7 1 71

9

CS 324 Computer Architecture Fall 2007

We were fine with 3+4.
Clarify:

e carry out is the extra 1 bit we generate that doesn't fit
¢ overflow is the condition where the answer is incorrect
¢ With unsigned addition, we have carry out iff we have overflow

¢ With signed addition, this is not the case:

— (-3)+(-4) produces a carry out but no overflow (-7 is the rigihgwer).

— 4+4 and 4+5 do not produce a carry out, but produce overfloar{eB-7 are the wrong
answers)

— (-4)+(-5) produces a carry out and overflows

How can we tell if we had a true overflow? If the carry in and gamut of the most significant bit
are different, we have a problem.

Subtle: addition in 2’'s complement is same as unsigned, soegdn’'t know what we’re playing
with (when designing an adding circuit).

Subtraction is done by negating the subtrahend and adding.

What about signed addition for 1’'s complement?

1 0001 -4 1011 -0 1111
+4 0100 +4 0100 +1 0001

5 0101 -0 1111 10000

So-0+1is 0. Not good. We need to add back in the carry out, t0@@L=1. We add in non-zero
carry-outs until there is a O carry out.

You will practice these on the first part of the lab.

Multiplication

Can we use the same approach we used for unsigned?

-1 1111
x3 0011

101101

10

CS 324 Computer Architecture Fall 2007

If we take the low 4 bits, we have -3, as we should.

But if we’re mutliplying 2 4-bit numbers and expecting an 8+eisult (reasonable thing to do), we
don’t have the right answer. 00101101=45.

We need to “sign extend” the numbers we're multiplying to 8 ffirst:

-1 11111111

x3 00000011

11111111
11111111

1011111101

Now, we truncate off the bits that didn’t fit and we have -3.

Something that wouldn't fit in 4 bits?

4 00000100
X-6 11111010

1111101000 = -24 (good)
Or two negatives that won't fit?

-5 11111011

X-3 11111101

11111011

11111011
11111011
11111011
11111011
11111011

11111011

00001111 = 15 (good)

11

CS 324 Computer Architecture Fall 2007

There’s a bunch of other stuff before that, but it all falls.ou

General division? Not here.

Multiplying (and dividing?) by powers of 2: shift. Does thagvays work?
To multiply 3x4, take 0011, shift left by 2, get 1100 (12).

To divide 27 by 8, take 00011011, shift right by 3, get 000QD(R).

We lose the fraction, but these are ints, so of course we do.

This is fast! Computers like multiplying and dividing by powsef 2.
Question: Is adding 1 any simpler than adding an arbitr&y

Logical operations
Our final topic on bits and numbers deals with logical operetion data.

Typically, we think of 1 as “true”, 0 as “false” but in many cumstances, any non-zero value may
be considered “true”.

C and other high-level languages have logical operatotgé¢iarn 0/1 values:
(==1,1=,&&])
You've certainly used these, know the basic idea. Recalldba ofshort-circuit evaluation.

There are also bitwise logical operators that work on al inittheir operands:

¢ bitwise AND (&) — result true when both operands true

&0 1
0([0 O
1,0 1

e bitwise OR () — result true when either operand true
| |0 1

"0]/0 1
111 1

e bitwise XOR () — result true when exactly one operand true
10 1

"0]0 1
1/1 0

e bitwise complement’() — result true when operand false

~

o1
10

12

CS 324 Computer Architecture Fall 2007

e Addition (+) vs. bitwise XOR ().

Note: 2's bit is a logical and, 1's bit is an XOR.
Remember this for later.

e Bitwise shift by n ¢>>n or x<<n)
“logical shift right” and “logical shift left”
i>>1 is division by 2
For negatives, a logical shift right gives the wrong answer:
(-2) >> 1 would take 1110 and give 0111, which is 7. Definitely not -2/2
The arithmetic shift copies in the sign bit to the values gehifted in.
So (-2)>> 1 would take 1110 and get 1111, the right answer (-1)

In C,>> is a logical shift right for an unsigned value, an arithmetiift right for a signed
value (exactly the right thing to do).

In Java (but not C) arithmetic shift right$>), but no arithmetic shift left
j<<k is multiplication by2*
(Aside: C has no power operator — call pow(@en’'t use™ (1))

e Some interesting and useful operations

— To set bit: in valuen (note bits are numbered right to left)
n=n]|(@<<i
or better yet
n|= (@1 <<i
— To mask bit; in valuen (we want the value of bit to remain, all others become 0)
n &= (1 << i)
— To toggle biti in n
n "= (1 <<)
— Can generalize to any set of bits, e.g. to mask low nibble:
n &= OxF

See Example:
/homel/jteresco/shared/cs324/examples/shiftyproduct

Floating point values

So far we have ignored non-integer numbers. We can storenggyar in our unsigned or signed
formats, given enough bits.

13

CS 324 Computer Architecture Fall 2007

What about all those other numbers that aren’t integers? mdtrmmbers, or even real numbers?

Let’s think about the way we represent these things in ourrfrad’ world.

3.5, ; 1.7 x 10*

We can use decimal notation, fractions, scientific notation

Fractions seem unlikely as our binary representation, leutam use the decimal notation (actually,
instead of a decimal point, we haveaaix point).

11.1= 2+1-% =3.50.11 :%+% %

Just like we can't represent some fractions in decimal mtatve can’t represent some fractions
in binary notation either.

Remembe% =3
Consider:.101

- - 1
What value is this? + 1 + & + ...

How about.1100?

How can we denote?

1. Multiply by 2, write integer part.

2. Keep fractional part, repeat until 0.

14

CS 324 Computer Architecture Fall 2007

3. £ =.001100110011...

Lots of decisions about how we place the radix point, etc. \&Btwo store a wide range of values,
but we're limited to2" unique values in any-bit representation.

Scientific notation helps us here. Consider some examples:

.0001011 = 1.011 x 274
1=1x27"1
1.1=11x2°

—101 = —1.01 x 22
1111 = 1.111 x 23

Floating point = integer par: mantissax 2exponent

sign mantissa exponent

If we use binary version of scientific notation, we note thidinambers (other than 0) have a
leading 1. Needn't store it! Thghantom 1 bit.

Mantissa is fractional, with MSb th?s bit, etc.

Exponent stored in excess notation (helpfulr@atively dumb hardware that must align fractional
values before addition or subtraction).

What about 0? That should be the all-0’s value. That reallyldvoepresent something like0 x
2—127_

Trying to store something smaller than that value wouldltesa floating point underflow.

Many standards, hard to implement, several useful and @hualues—+Infinity, -Infinity, Not-a-
number, etc. Not our concern.

15

