Computer Science 322
M[] (C Operating Systems
_— Mount Holyoke College
MOUNT HOLYOKE COLLEGE Sprlng 2010

Topic Notes: Unix Systems Programming

Quote: UNIX system calls, reading about those can be abouter®sting as reading the phone
book... — George Williams, 3/12/91

We will consider several aspects of Unix systems progrargniotusing first on those things you
will need for the shell project.

Error checking/reporting

Most Unix system calls may fail for a variety of reasons. Ybowd always check the return value
of system calls that may fail. The reason for a failure in¢ine no variable. A list of errors can
be found ini ntro(2).

The system callper ror (3) andstrerror (3) allow you to print out (hopefully) meaningful
error messages when you detect a failed system call.

See Example:
/ home/ j t eresco/ shar ed/ cs322/ exanpl es/ perror

With Unix system calls, there are a lot of good reasons thatesioing can fail. It's worth your
trouble to check these return conditions and print meanirggfor messages.

Process Management

You need to use a number of Unix system calls related to psatesmagement to implement the
shell. We have seen a few of these:

get pi d() — get current process ID
get ppi d() — get parent’s process ID

for k() — duplicate process. Child is a copy of the parent - in exenwicthe same point, the
statement after the return frohor k() .

The return value indicates if you are child or parent. 0 isdcht 0 means parent, -1 means failure
(limit reached, permission denied)

Example:

pi d=fork();

if (pid) {
parent stuff;

CS 322 Operating Systems Spring 2010

}

el se {
child stuff;
}

exi t () —terminate a process. Ifit’s a child, it waits for its paremaccept its return code. If this
doesn’t happen, the child is called a “zombie” process.

To avoid this — calwai t () (orwai t pi d()) from the parent — parent stops and waits for the
child to terminate (calexi t () or _exit()).

Returns PID of child, and in its argument, the status inclildesalue the child passedéai t () .
Recall example from earlier:

See Example:
/ hone/ j teresco/ shared/ cs322/ exanpl es/ f or ki ng

Be careful not to confuse thiswai t () with thewai t () operation on semaphores that we' Il see
later!

Running a new program —exec calls

fork() lets you have two copies of a process — the same process. iB@nehis is just what
you want, but what if you want to start a new process runnimgesother program.

To create processes that do other stuff,ftbek() is followed by one of these “exec” calls, in the
child process:

execl () —exec a process with list of arguments

execv() —exec a process with args specified in an array
execl p() —list, but search the existing path for the program.
execvp() —array, but search the existing path for the program.
execVvP() — array, but specify a search path for the program.
The man pages have details.

The related/f or k() system call is often more appropriate when the child prosgibe doing
anexec() immediately. It doesn't duplicate all of the memory for ther@nt process. Beware:
this may cause you trouble in the shell if you use it, sinceptirent is usually suspended until the
child exi t s or calls arexec.

See Example:
/ hone/ j teresco/ shared/ cs322/ exanpl es/ exec

1. Start by looking aéxec:

e execl p parameters: program to run, arguments

2

CS 322 Operating Systems Spring 2010

e this is a varargs function call — we can send any number ohpeters
e see what happens if we exec something not inrRAEH (try it)
e can specify fully-qualified path

2. Look atpr oci nf o program:

e just print some information about the process
e pid, arguments (including one beyond the last)

3. Useexecpr oci nf o to execute it. Note thatr gv[0] isn’t always the command that was
executed — just whatever was passed as the second parantéeexec.

4. Tryexec?2:
e sometimes an array of parameters is more convensxgcvp()
5. Tryexec2nonul | :

e what if we forget theNULL?
e what if we have &NULL, but not right away?

6. Tryexecwi t har gs:

e note that it works as expected

e note the use of thar gv as passed in (except gv[0] — that would be a problem —
try it).

e useexecw t har gs to exec itself

¢ and itself followed by something else

¢ have it exec something that's not in the path

Signals

Unix processes can communicate by sending each sifyrels.

Typeki I | -1 atyour favorite Unix prompt to see the names of the signaspports.
kill -SIGNAL pi d will send signalSI GNAL to a procesgi d:

-> sl eep 60&

[1] 96132

-> kill -TERM %

[1]+ Term nated sl eep 60
-> sl eep 60&

[1] 96133

CS 322 Operating Systems Spring 2010

-> kill -STOP %

[1] + Stopped sl eep 60
-> kill -CONT %

-> j obs

[1] + Runni ng sleep 60 &
->

[1] + Done sl eep 60
->

Every process hasgnal handlersthat are used to respond to signals sent to the process. Basica
it's a function that gets calleasynchronously when a signal is received.

A default signal handler is installed when a process begins.
Two system calls are used to send and catch signals:
si gnhal () —replace default handler. Lets ytnap many signals and handle them appropriately.

Be careful not to confuse thissi gnal () withthesi gnal () operation on semaphores when we
get to that topic!

See Example:
/ home/ j t eresco/ shar ed/ cs322/ exanpl es/ si gnal s

Example: A compute-bound process that “wakes up” every bre#cto report on its progress.
See:si gal rm exanpl e. ¢

Note the use ofeti ti ner(2).

We can ignore a signal completely by setting its handleBlt&.| GN, and restore the default
handler withSI G DFL.

Enhanced examplesi gal r m exanpl e2. c

A process can also send signals withl | () . Don’t let the name fool you, you can send any
signal withki I'l (), notjustSI GKI LL.

Note thatSI GTERMs handler sends the procesSla@ NT.

Note that we do not tral GSTOP andSI GCONT, we can try these out.
Note that we do not trap other signals, liBeGUSR1.

Note: SI GCHLD will be useful for your shell projects.

Low-level File Operations

You may (or may not) be familiar with the C standard file I/Otinas defined irst di 0. h, such
asfopen(),fscanf(),fprintf(),andfcl ose(). These provide relatively “high-level”
access to files in that you deal with data types rather thaw-dgeel stream of bytes.

Underneath the stdio functions, you will find those low-lesperations:open(), cl ose(),

4

CS 322 Operating Systems Spring 2010

read(),wite().
The man pages describe these in great detail.

See Example:
/ home/ j t eresco/ shar ed/ cs322/ exanpl es/ everyot her. c

Note that there are three automatic file descriptors:

0 stdin
1 st dout
2 stderr

These operate only on raw data and pay no attention to dagaotygny formatting.

Pipes

Processes may wish to send data streams to each other.pigesare one way to achieve this.
You've almost certainly used Unix pipes at the command I¥e can also use them in programs.

An unnamed pipe can be created using the

int pipe(int fd[]);

system call.f d is an array of twad nt values. These are file descriptors, very similar to the file
descriptors used for file 1/0O usirgpen() ,read(),andwite().

fd[O] isthe “read end” anfld[1] is the “write end”. O return means success. -1 means failure.

read() andwrite() again operate only on basic streams of bytes — any structust be
added.

See Example:
/ home/ j t eresco/ shar ed/ cs322/ exanpl es/ pi pes

An example of communication between two processes, a panehts child created biyor k() ,
communicating via an unnamed pipe iginpel. c

This required the shared valuedaf. This is fine when you create your pipe just befofeoa k() ,
but what if we have two processes already in existence thsdt t8i communicate through a pipe?

We can create aamed pipe with nkf i f o (command or system call).
We can make our simple example using the named ppee2. c

We can make an example that’s a little more interesting, &/h&o independent processes com-
municate through a pipgai pepr ocs. c

Duplicating file descriptors

We can use thelup2() system call to reroute things that were going to one file dgerinto
another file descriptor. This is how your I/O redirection gakes will work in the shell.

5

CS 322 Operating Systems Spring 2010

See examplexecredir.c
Note that we don’t close the file here and in fact are not givea@portunity to do so.
We have seen that you can also obtain file descriptors &pen() , pi pe()

Note that the fd’s at the ends of a pipe can be passetlif2() — this will be useful — set the
output of one process to be the input of another through a pipe

