
Computer Science 322
Operating Systems
Mount Holyoke College
Spring 2010

Topic Notes: Process Synchronization

Cooperating Processes
An Independent process is not affected by other running processes.

Cooperating processes may affect each other, hopefully in some controlled and useful way.

Why cooperating processes?

• information sharing

• computational speedup

• modularity or convenience

It’s hard to find a computer system where processes do not cooperate. Consider the commands
you type at the Unix command line. Your shell process and the process that executes your com-
mand must cooperate. If you use a pipe to hook up two commands,you have even more process
cooperation (Recall your shell lab experiences).

For the processes to cooperate, they must have a way to communicate with each other. Two com-
mon methods:

• shared variables – some segment of memory which is accessible to both processes

• message passing – a process sends an explicit message that isreceived by another

For now, we will consider shared-memory communication. We saw that threads, for example,
share their global context, so that is one way to get two processes (threads) to share a variable.
You also saw that independent processes can communicate viashared memory segments in a Unix
system.

Producer-Consumer Problem

The classic example for studying cooperating processes is the Producer-Consumer problem.



CS 322 Operating Systems Spring 2010

Buffer

Producer Consumer

One or more produces processes is “producing” data. This data is stored in a buffer to be “con-
sumed” by one or more consumer processes.

The buffer may be:

• unbounded – We assume that the producer can continue producing items and storing them
in the buffer at all times. However, the consumer must wait for an item to be inserted into
the buffer before it can take one out for consumption.

• bounded – The producer must also check to make sure there is space available in the buffer.

Bounded Buffer, buffer size n

For simplicity, we will assume the objects being produced and consumed areint values.

This solution leaves one buffer entry empty at all times:

• Shared data

int buffer[n];
int in=0;
int out=0;

• Producer process

while (1) {
...
produce item;
...
while (((in+1)%n) == out); /* busy wait */
buffer[in]=item;
in=(in+1)%n;

}

• Consumer process

2



CS 322 Operating Systems Spring 2010

while (1) {
while (in==out); /* busy wait */
item=buffer[out];
out=(out+1)%n;
...
consume item;
...

}

See Example:
/home/jteresco/shared/cs322/examples/prodcons-shmem

See Example:
/home/jteresco/shared/cs322/examples/prodcons-pthreads

Is there any danger with this solution in terms of concurrency? Remember that these processes
can be interleaved in any order – the system could preempt theproducer at any time and run the
consumer.. Things to be careful about are shared referencesto variables.

Note that only one of the processes canmodify the variablesin andout. Both use the values,
but only the producer modifiesin and only the consumer modifiesout. Try to come up with a
situation that causes incorrect behavior – hopefully you cannot.

Perhaps we want to use the entire buffer...let’s add a variable to keep track of how many items are
in the buffer, so we can tell the difference between an empty and a full buffer:

• Shared data

int buffer[n];
int in=0;
int out=0;
int counter=0;

• Producer process

while (1) {
...
produce item;
...
while (counter==n); /* busy wait */
buffer[in]=item;
in=(in+1)%n;
counter=counter+1;

}

• Consumer process

3



CS 322 Operating Systems Spring 2010

while (1) {
while (counter==0); /* busy wait */
item=buffer[out];
out=(out+1)%n;
counter=counter-1;
...
consume item;
...

}

We can now use the entire buffer. However, there is a potential danger here. We modifycounter
in both the producer and the consumer.

See Example:
/home/jteresco/shared/cs322/examples/prodcons-shmem

See Example:
/home/jteresco/shared/cs322/examples/prodcons-pthreads

Everything looks fine, but let’s think about how a computer actually executes those statements to
increment or decrementcounter.

counter++ really requires three machine instructions: (i) load a register with the value of
counter’s memory location, (ii) increment the register, and (iii) store the register value back
in counter’s memory location. There’s no reason that the operating system can’t switch the
process out in the middle of this.

Consider the two statements that modifycounter:

Producer Consumer
P1 R0 = counter; C1 R1 = counter;
P2 R0 = R0 + 1; C2 R1 = R1 - 1;
P3 counter = R0; C3 counter = R1;

Consider one possible ordering:P1 P2 C1 P3 C2 C3 , wherecounter=17 before starting. Uh oh.

What we have here is arace condition.

You may be thinking, “well, what are the chances, one in a million that the scheduler will choose
to preempt the process at exactly the wrong time?”

Doing something millions or billions of times isn’t really that unusual for a computer, so it would
come up..

Some of the most difficult bugs to find in software (often in operating systems) arise from race
conditions.

This sort of interference comes up in painful ways when “real” processes are interacting.

Consider two processes modifying a linked list, one inserting and one removing. A context switch
at the wrong time can lead to a corrupted structure:

4



CS 322 Operating Systems Spring 2010

struct node {
...
struct node *next;

}

struct node *head, *tail;

void insert(val) {
struct node *newnode;

newnode = getnode();
newnode->next = NULL;
if (head == NULL){

head = tail = newnode;
} else { // <==== THE WRONG PLACE
tail->next = newnode;
tail = newnode;

}
}

void remove() {
// ... code to remove value ...
head = head->next;
if (head == NULL) tail = NULL;
return (value);

}

If the process executing insert is interrupted at “the wrongplace” and then another process calls
remove until the list is empty, when the insert process resumes, it will be operating on invalid
assumptions and the list will be corrupted.

In the bounded buffer, we need to make sure that when one process starts modifyingcounter,
that it finishes before the other can try to modify it. This requiressynchronization of the processes.

Process synchronization is one of the major topics of this course, and one of the biggest reasons I
think every undergraduate CS major should take an OS course.

If there were mutliple producers or consumers, we would havethe same issue with the modification
of in andout, so we can’t rely on the “empty slot” approach in the more general case.

We need to make those statements that increment and decrement counter atomic.

We say that the modification ofcounter is acritical section.

Critical Sections
The Critical-Section problem:

5



CS 322 Operating Systems Spring 2010

• n processes, all competing to use some shared data

• each process has a code segment (the critical section) in which shared data is accessed

while (1) {
<CS Entry>
critical section
<CS Exit>
non-critical section

}

• Need to ensure that when one process is executing in its critical section, no other process is
allowed to do so

Example: Intersection/traffic light analogy

Example: one-lane bridges during construction

Any solution to the critical section problem must satisfy three conditions:

1. Mutual exclusion: If processPi is executing in its critical section, then no other processes
can be executing in their critical sections. “One at a time.”

2. Progress: If no process is executing in its critical section and thereexist some processes
that wish to enter their critical section, then the selection of the processes that will enter the
critical section next cannot be postponed indefinitely. “nounnecessary waiting.”

3. Bounded waiting: A bound must exist on the number of times that other processes are al-
lowed to enter their critical sections after a process has made a request to enter its critical
section and before that request is granted. “no starvation.” (We must assume that each pro-
cess executes at non-zero speed, but make no assumptions about relative speeds of processes)

One possible way to deal with this is to make sure the problematic context switch doesn’t happen.

If we disable interrupts so a context switch isn’t possible while we’re executing the critical section,
we will prevent the interference.

However, this is a bit extreme, since it doesn’t just restrict another process that will be modify-
ing the same shared variable from being switched in, it prevents ANY other process from being
switched in.

This approach would also not work in a multiprocessor environment when the interference could
be from two processes running truly concurrently.

Algorithmic Approaches for 2 Processes

6



CS 322 Operating Systems Spring 2010

We first attempt to solve this for two processes,P0 andP1. They share some variables to syn-
chronize. We fill in<CS Entry> and<CS Exit> from above with code that should satisfy the
three conditions.

Critical Section Algorithm 1

• Shared data

int turn=0;

• ProcessPi (definej = 1 − i, the other process)

while (1) {
while (turn!=i); /* busy wait */

/* critical section */

turn=j;

/* non-critical section */

}

Note the semicolon at the end of the while statement’s condition at the line labeled “busy wait”
above. This means thatPi just keeps comparingturn to i over and over until it succeeds. This
is sometimes called aspin lock. For now, this is our only method of making one process wait for
something to happen. More on this later.

This does satisfy mutual exclusion, but not progress (alternation is forced).

Critical Section Algorithm 2

We’ll avoid this alternation problem by having a process wait only when the other has “indicated
interest” in the critical section.

• Shared data

boolean flag[2];
flag[0]=false;
flag[1]=false;

• ProcessPi

7



CS 322 Operating Systems Spring 2010

while (1) {
flag[i]=true;
while (flag[j]);

/* critical section */

flag[i]=false;

/* non-critical section */

}

flag[i] set totrue means thatPi is requesting access to the critical section.

This one also satisties mutual exclusion, but not progress.

Both can set their flags, then both start waiting for the other to setflag[j] back to false. Not
going to happen...

If we swap the order of theflag[i]=true; andwhile (flag[j]); statements, we no
longer satisfy mutual exclusion.

Critical Section Algorithm 3

We combine the two previous approaches:

• Shared data

int turn=0;
boolean flag[2];
flag[0]=false;
flag[1]=false;

• ProcessPi

while (1) {
flag[i]=true;
turn=j;
while (flag[j] && turn==j);

/* critical section */

flag[i]=false;

/* non-critical section */

}

8



CS 322 Operating Systems Spring 2010

So, we first indicate interest. Then we setturn=j;, effectively saying “no, you first” to the other
process. Even if both processes are interested and both get to the while loop at the “same” time,
only one can proceed. Whoever setturn first gets to go first.

This one satisfies all three of our conditions. This is known as Peterson’s Algorithm.

Peterson’s Algorithm in action:

See Example:
/home/jteresco/shared/cs322/examples/prodcons-pthreads

Algorithmic Approach for n Processes: Bakery algorithm

Can we generalize this forn processes? The Bakery Algorithm (think deli/bakery “now serving
customerX” systems) does this.

The idea is that each process, when it wants to enter the critical section, takes a number. Whoever
has the smallest number gets to go in. This is more complex than the bakery ticket-spitters because
two processes may grab the same number (to guarantee that they wouldn’t would require mutual
exclusion – exactly the thing we’re trying to implement), and because there is no attendant to call
out the next number – the processes all must come to agreementon who should proceed next into
the critical section.

We break ties by allowing the process with the lower process identifier (PID) to proceed. ForPi,
we call it i. This assumes PIDs from 0 ton − 1 for n processes, but this can be generalized.

Although two processes that try to pick a number at about the same time may get the same number,
we do guarantee that once a process with numberk is in, all processes choosing numbers will get
a number> k.

Notation used below: an ordered pair(number, pid) fully identifies a process’ number. We
define alexicographic order of these:

• (a, b) < (c, d) is a < c or if a = c andb < d

The algorithm:

• Shared data, initialized to 0’s and false

boolean choosing[n];
int number[n];

• ProcessPi

while (1) {
choosing[i]=true;
number[i]=max(number[0],number[i],...,number[n-1])+1;

9



CS 322 Operating Systems Spring 2010

choosing[i]=false;
for (j=0; j<n; j++) {

while (choosing[j]);
while ((number[j]!=0) &&

((number[j],j) < (number[i],i)));
}

/* critical section */

number[i]=0;

/* non-critical section */

}

Before choosing a number, a process indicates that it is doingso. Then it looks at everyone else’s
number and picks a number one larger. Then it says it’s done choosing.

Then look at every other process. First, wait for that process not to be choosing. Then make sure
we are allowed to go before that process. Once we have successfully decided that it’s safe to go
before every other process, then go!

To leave the CS, just reset the number back to 0.

So great, we have a solution. But...problems:

1. That’s a lot of code. Lots of while loops and for loops. Couldbe expensive if we’re going to
do this a lot.

2. If this is a highly popular critical section, the numbers might never reset, and we could
overflow our integers. Unlikely, but think what could happenif we did.

3. It’s kind of inconvenient and in some circumstances, unreasonable, to have these arrays ofn

values. There may not always ben processes, as some may come and go.

Synchronization hardware

Hardware support can make some of this a little easier. Problems can arise when a process is
preempted within a single high-level language line. But we can’t preempt in the middle of a
machine instruction.

If we have a single machine instruction that checks the valueof a variable and sets itatomically,
we can use that to our advantage.

This is often called aTest-and-Set or Test and Set Lock instruction, and does this, atomi-
cally:

10



CS 322 Operating Systems Spring 2010

boolean TestAndSet(boolean *target) {
boolean orig_val = *target;

*target = TRUE;
return orig_val;

}

So it sets the variable passed in to true, and tells us if it wastrue or falsebefore we called it. So if
two processes do this operation, both will set the value oftarget to true, but only one will get a
return value of false.

This is the functionality we want, but how does the instruction actually work?

Really, this would be an instruction that takes two operands:

TAS R, X

WhereR is a CPU register andX is a memory location. After the instruction completes (atomi-
cally), the value that was in memory atX is copied intoR, and the value ofX is set to 1.R contains
a 0 if X previously contained a 0. If two processes do this operationconcurrently, only one will
actually get the 0.

The Intel x86BTS instruction sets a single bit in memory and sets the carry bitof the status word
to the previous value. This is equivalent.

Think about how you might implement an atomic test and set on,for example, a microprogrammed
architecture.

Any of these can be used to implement a “test and set” functionas described above.

Armed with this atomic test-and-set, we can make a simple mutual exclution solution for any
number of processes, with just a single shared variable:

• Shared data

boolean lock = false;

• ProcessPi

while (1) {
while (TestAndSet(&lock)); /* busy wait */

/* critical section */

lock = false;

/* non-critical section */
}

11



CS 322 Operating Systems Spring 2010

This satisfies mutual exclusion and progress, but not bounded waiting (a process can leave the CS
and come back around and grab the lock again before others whomay be waiting ever get a chance
to look).

A solution that does satisfy bounded waiting is still fairlycomplicated:

• Shared data

boolean lock=false;
boolean waiting[n]; /* all initialized to false */

• ProcessPi and its local data

int j;
boolean key;

while (1) {
waiting[i]=true;
key=true;
while (waiting[i] && key)

key = TestAndSet(&lock);
waiting[i]=false;

/* critical section */

j=(i+1)%n;
while ((j!=i) && !waiting[j])

j=(j+1)%n;
if (j==i) lock=false;
else waiting[j]=false;

/* non-critical section */

}

Another hardware instruction that might be available is theatomicswap operation:

void swap(boolean *a, boolean *b) {
boolean temp = *a;

*a = *b;

*b = temp;
}

12



CS 322 Operating Systems Spring 2010

Different architectures have variations on this one, including the x86XCHG instruction.

An algorithm to use this, minus the bounded wait again, is straightforward:

• Shared data

boolean lock = false;

• ProcessPi

boolean key = true;
while (1) {

while (key == true) swap(&key,&lock); /* busy wait */

/* critical section */

lock = false;

/* non-critical section */
}

It’s pretty similar to what we saw before withTestAndSet().

Semaphores
All that busy waiting in all of our algorithms for mutual exclusion is pretty annoying. It’s just
wasted time on the CPU. If we have just one CPU, it doesn’t make sense for that process to take
up its whole quantum spinning away waiting for a shared variable to change that can’t change until
the current process relinquishes the CPU!

This inspired the development of thesemaphore. The name comes from old-style railroad traffic
control signals (seehttp://www.semaphores.com), where mechanical arms swing down to
block a train from a section of track that another train is currently using. When the track was free,
the arm would swing up, and the waiting train could now proceed.

A semaphoreS is basically an integer variable, with two atomic operations:

wait(S):
while (S <= 0); /* wait */
S--;

signal(S):
S++;

13



CS 322 Operating Systems Spring 2010

wait andsignal are also often calleddown andup (from the railroad semaphore analogy) and
occasionally are calledP andV (because Dijkstra, who invented them, was Dutch, and these are
the first letters of the Dutch wordsproberen (to test) andverhogen (to increment)).

Important!!! Processes using a semaphore in its most pure form are not allowed to set or examine
its value. They can use the semaphoreonly through thewait andsignal operations.

Note, however, that we don’t want to do a busy-wait. A processthat has to wait should be put to
sleep, and should wake up only when a correspondingsignal occurs, as that is the only time the
process has any chance to proceed.

Semaphores are built using hardware support, or using software techniques such as the ones we
discussed for critical section management.

Since the best approach is just to take the process out of the ready queue, some operating systems
provide semaphores through system calls. We will examine their implementation in this context
soon.

Given semaphores, we can create a much simpler solution to the critical section problem forn
processes:

• Shared data

semaphore mutex=1;

• ProcessPi

while (1) {
wait(mutex);

/* critical section */

signal(mutex);

/* non-critical section */
}

The semaphore provides the mutual exclusion for sure, and should satify progress, but depending
on the implementation of semaphores, may or may not provide bounded waiting.

A semaphore implementation might look like this:

struct semaphore {
int value;
proclist L;

};

14



CS 322 Operating Systems Spring 2010

• block operation suspends the calling process, removes it from consideration by the scheduler

• wakeup(P) resumes execution of suspended processP , puts it back into consideration

• wait(S):

S.value--;
if (S.value < 0) {
add this process to S.L;
block;

}

• signal(S):

S.value++;
if (S.value <= 0) {

remove a process P from S.L;
wakeup(P);

}

There is a fairly standard implementation of semaphores on many Unix systems: POSIX semaphores

• create a shared variable of typesem t

• initialize it with sem init(3)

• wait operation issem wait(3)

• signal operation issem post(3)

• deallocate withsem destroy(3)

Examples using POSIX semaphores and a semaphore-like construct called amutex provided by
pthreads to provide mutual exclusion in the bounded buffer problem:

See Example:
/home/jteresco/shared/cs322/examples/prodcons-pthreads-counter-sem

The pthreads librarymutex is essentially a binary semaphore (only 0 and 1 are allowed).See
pthread mutex init(3).

Note that what we have been looking at arecounting semaphores. This means that is the semaphore’s
value is 0 and there are twosignal operations, its value will be 2. This means that the next two
wait operations will not block.

This means that semaphores can be used in more general situations than simple mutual exclusion.
Perhaps we have a section that we want at most 3 processes in atthe same time. We can start with
a semaphore initialized to 3.

15



CS 322 Operating Systems Spring 2010

Semaphores can also be used as a more general-purpose synchronization tool. Suppose statement
B in processPj can be executed only after statementA in Pi. We use a semaphore calledflag,
initialized to 0:

Pi Pj

... ...
A; wait(flag);

signal(flag); B;
... ...

Here, Pj will be forced to wait only if it arrives at thewait call beforePi has executed the
signal.

Of course, we can introducedeadlocks (two or more processes waiting indefinitely for an event
that can only be caused by one of the waiting processes).

Consider semaphoresQ andR, initialized to 1, and two processes that need to wait on both. A
careless programmer could write:

P0 P1

wait(Q); wait(R);
wait(R); wait(Q);

... ...
signal(R); signal(Q);
signal(Q); signal(R);

... ...

Things might be fine, but they might not be.

There’s also the possibility that a process might just forget asignal and leave one or more other
processes (maybe even itself) waiting indefinitely.

We will look into the implementation of semaphores and mutexes later, but for now we will look
more at how to use them as a synchronization tool.

Classical Problems of Synchronization
We will use semaphores to consider some synchronization problems. While some actual imple-
mentations provide the ability to “try to wait”, or to examine the value of a semaphore’s counter,
we restict ourselves to initialization,wait, andsignal.

Bounded buffer using semaphores

First, we revisit our friend the bounded buffer.

• Shared data:

16



CS 322 Operating Systems Spring 2010

semaphore fullslots, emptyslots, mutex;
full=0; empty=n; mutex=1;

• Producer process:

while (1) {
produce item;
wait(emptyslots);
wait(mutex);
add item to buffer;
signal(mutex);
signal(fullslots);

}

• Consumer process:

while (1) {
wait(fullslots);
wait(mutex);
remove item from buffer;
signal(mutex);
signal(emptyslots);
consume item;

}

mutex provides mutual exclusion for the modification of the buffer(not shown in detail). The
others make sure that the consumer doesn’t try to remove froman empty buffer (fullslots is
> 0) or that the producer doesn’t try to add to a full buffer (emptyslots is > 0).

Dining Philsophers

• One way to tell a computer scientist from other people is to ask about the dining philoso-
phers.

• Five philosophers alternate thinking and eating

• Need 2 forks to do so (eating spaghetti), one from each side

• keep both forks until done eating, then replace both

Sincefork is the name of a C function, we’ll use a different (and possibly more appropriate)
analogy of chopsticks. The philosophers needs two chopsticks to eat rice.

• Shared data:

17



CS 322 Operating Systems Spring 2010

semaphore chopstick[5];
chopstick[0..4]=1;

• Philosopheri:

while (1) {
wait(chopstick[i]);
wait(chopstick[(i+1)%5]);

/* eat */

signal(chopstick[i]);
signal(chopstick[(i+1)%5]);

/* think */

}

This solution may deadlock.

One way to reduce the chances of deadlock might be to think first, since each might think for a
different amount of time.

Another possibility:

Each philosopher

1. Picks up their left chopstick

2. Checks to see if the right chopstick is in use

3. If so, the philosopher puts down their left chopstick, andstarts over at 1.

4. Otherwise, the philosopher eats.

Does this work?

No! It livelocks. Consider this: all could pick up their left chopstick, look right, put down the left,
and repeat indefinitely.

How to solve this? Must either

1. introduce an asymmetry, or

2. limit the number of concurrently hungry philosophers ton − 1.

Here’s one that includes an asymmetry, by having odd numbered philosophers pick up to the right
first. The code for philosopheri and problem sizen.

18



CS 322 Operating Systems Spring 2010

void philosopher() {
think;
if (odd(i)) {

wait(chopstick[(i+1) % n]);
wait(chopstick[i]);

}
else {

wait(chopstick[i]);
wait(chopstick[(i+1) % n]);

}
eat;
if (odd(i)) {

signal(chopstick[(i+1) % n]);
signal(chopstick[i]);

}
else {

signal(chopstick[i]);
signal(chopstick[(i+1) % n]);

}
}

Readers-Writers

We have a database and a number of processes that need access to it. We would like to maximize
concurrency.

• There are multiple “reader processes” and multiple “writerprocesses”.

• Readers see what’s there, but don’t change anything. Like a person on a travel web site
seeing what flights have seats available.

• Writers change the database. The act of making the actual reservation.

• It’s bad to have a writer in with any other writers or readers –may sell the same seat to a
number of people (airline, sporting event, etc). Remembercounter++ andcounter--!

• Multiple readers are safe, and in fact we want to allow as muchconcurrent access to readers
as we can. Don’t want to keep potential customers waiting.

A possible solution:

• Shared data:

semaphore wrt, mutex;
int readcount;
wrt=1; mutex=1; readcount=0;

19



CS 322 Operating Systems Spring 2010

• Writer process:

while (1) {
wait(wrt);

/* perform writing */

signal(wrt);
}

• Reader process:

while (1) {
wait(mutex);
readcount++;
if (readcount == 1) wait(wrt);
signal(mutex);

/* perform reading */

wait(mutex);
readcount--;
if (readcount == 0) signal(wrt);
signal(mutex);

}

Note that the semaphoremutex protectsreadcount and is shared among readers only.

Semaphorewrt is indicates whether it is safe for a writer, or the first reader, to enter.

Danger: a reader maywait(wrt) while inside mutual exclusion ofmutex. Is this OK?

This is a reader-preference solution. Writers can starve! This might not be good if the readers are
“browsing customers” but the writers are “paying customers!”

Sleeping Barber

Problem: A certain barber shop has a single barber, a barber’s chair, andn chairs in a waiting area.
The barber spends his life in the shop. If there are no customers in the shop, the barber sleeps in
the chair until a customer enters and wakes him. When customers are in the shop, the barber is
giving one a haircut, and will call for the next customer whenhe finishes with each. Customers
arrive periodically. If the shop is empty and the barber is asleep in the barber’s chair, he wakes the
barber and gets a haircut. If the barber is busy, but there arechairs available in the waiting room,
he sleeps in one of those chairs until called. Finally, if there are no available chairs in the waiting
room, the customer leaves and comes back another time.

A possible solution:

20



CS 322 Operating Systems Spring 2010

• Shared Data

constant CHAIRS = maximum number of chairs (including barber chair)
semaphore mutex=1,next_cust=0,barber_ready=0;
int cust_count=0;

• Customer process

while (1) {
/* live your non barber-shop life until you decide you need

a haircut */
wait(mutex);
if (cust_count>=CHAIRS) {

signal(mutex);
exit; /* leave the shop if full, try tomorrow */

}
cust_count++; /* increment customer count */
signal(mutex);
signal(next_cust); /* wake the barber if he’s sleeping */
wait(barber_ready); /* wait in the waiting room */

/* get haircut here */

wait(mutex);
cust_count--; /* leave the shop, freeing a chair */
signal(mutex);

}

• Barber process

while (1) {
wait(next_cust); /* sleep until a customer shows up */
signal(barber_ready); /* tell the next customer you are ready */

/* give the haircut here */

}

Semaphore Implementations

POSIX semaphores

21



CS 322 Operating Systems Spring 2010

We have seen examples using POSIX semaphores and pthread mutexes.

POSIX semaphores are implemented using pthreads mutexes:

/usr/src/lib/libc r/uthread/uthread sem.c

Thestruct sem definition is in/usr/src/lib/libc r/uthread/pthread private.
h

This is an implementation of full counting semaphores usinga construct that is much like a binary
semaphore.

Note that if we determine that await() call must result in an actual wait (rather than just a
decrement of the semaphore value) we need to put the thread tosleep and unlock the mutex.

We need something else to “sleep” on. All we have to work with are pthread functions here, not
the actual kernel data structures that a lower-level implementation of semaphores might use.

pthreads provides a construct called acondition variable, with which a thread can be put to sleep
with a call topthread cond wait().

This essentially provides a place for pthreads to sleep awaiting someone to “signal” them by calling
pthread cond signal().

Calling pthread cond wait() also releases the mutex so some other thread can have the
chance to come in and do asem post() to let us continue at some point in the future.

The thread automatically reacquires the mutex lock when it is awakened.

We can see the calls topthread cond wait() in sem wait() andpthread cond signal()
in sem post().

This implementation also provides asem trywait() and asem getvalue() which make
these even more flexible than the semaphores we have been assuming for our synchronization
problems.

Note: in FreeBSD, these are implemented as an extention to thepthreads library, and cannot be
used for synchronization of independent processes. (see the comment insem init())

Pthreads mutex/condition variables

But what about these pthread mutexes and condition variables? How are these achieved?

See/usr/src/lib/libc r/uthread/pthread private.h,/usr/src/lib/libc
r/uthread/uthread mutex.c and/usr/src/lib/libc r/uthread/uthread cond.
c.

First, note the structure definitions forstruct pthread mutex andstruct pthread cond.

Thepthread mutex init() function initializes the structure. Not much of interest here.

Thepthread mutex lock() just calls another internal routine,mutex lock common().

Once we check errors and defer signals, we call

22



CS 322 Operating Systems Spring 2010

_SPINLOCK(&(*mutex)->lock);

As the name suggests, this is a spin lock. But aren’t we supposed to be avoiding these? Let’s see
what this is all about. It is a macro. It actually ends up calling a function spinlock defined in
/usr/src/lib/libc r/uthread/uthread spinlock.c

While we cannot obtain the lock with an atomic test and set operation, we yield the CPU and try
again. Note that the atomic test operation, defined in/usr/src/lib/libc r/arch/i386/
atomic lock.S, uses thexchg instruction on the x86. This instruction is an atomic swap

of the value in a register with the values in a memory location. Note that each architecture has
something implemented in assembly that will provide equivalent functionality.

OK, so back in themutex lock common() function, we have exclusive access to the mutex
data structure. We can now see if it’s locked (if it has a non-NULL owner). If not, we take it. If so,
we add ourself to the list of waiters. Thethread kern sched state unlock() function
then unlocks the mutex, and we change our state toPS MUTEX WAIT, so we will not be scheduled
until the mutex is unlocked.

When it comes time to unlock, we end up in themutex unlock common() function. We
basically get the lock on the mutex (spinlock). If there are threads waiting on the lock, we pick the
next one, set its state toPS RUNNING and do some other bookkeeping so it can run. If no thread
was waiting, the assignment inside the if statement sets theowner toNULL, unlocking the mutex
for the next lock attempt.

So what about the condition variable?

This is implemented in/usr/src/lib/libc r/uthread/uthread cond.c.

Initialization is straightforward - not much of interest here.

pthread cond wait() is where the interesting functionality lives. Once we see that the call
is valid, the current thread is added to the condition variable’s waiting queue, and given a “never
wake up” status, set its state toPS COND WAIT.

pthread cond signal() selects a thread that is waiting on the condition variable and wakes
it up by setting its state toPS RUNNING.

SysV Semaphores

FreeBSD also implements System V semaphores.

SysV (along with BSD) was one of the two major “flavors” of Unix.

Most Unix systems were either BSD-based (SunOS up to 4.x, Ultrix) or SysV-based (Irix, Solaris).

Despite being (as you may have guessed) BSD-based, FreeBSD relies on a semaphore implemen-
tation from a long, long time ago from SysV.

These are described in great detail in Bach.

They are allocated in groups, stored in arrays.

23



CS 322 Operating Systems Spring 2010

See Example:
/home/jteresco/shared/cs322/examples/prodcons-sysvsemaphore

This example demonstrates the use of these semaphores to synchronize independent processes.

The buffer process creates and initializes the semaphores (and some shared memory). Semaphores
created withsemget(), we set their initial values by callingsemctl() with theSETVAL com-
mand.

Producer and consumer processes attach to the existing shared memory and semaphores, then use
the semaphores as we have seen in producer/consumer examples in class. Usingsemop() call.

We won’t look at the implementation of these in as much detailas we did for the POSIX semaphores,
but here are some highlights.

Implementation for FreeBSD is in/usr/src/sys/kern/sysv sem.c

Seesemop() callingmsleep() (Line 1052).

msleep() is a kernel call that puts a process to sleep until someone calls wakeup().

These are defined in/usr/src/sys/kern/kern synch.c and this is where PCBs are actu-
ally put into sleep queues and removed from ready/run queues.

Windows XP Semaphores

Windows XP provides both binary semaphores (mutexes) and counting semaphores.

Monitors
Semaphores are error-prone (oops, did I saywait? I meantsignal!). You might never release
a mutex, might run into unexpected orderings that lead to deadlock.

Monitors are a high-level language constuct intended to avoid some of these problems. A monitor
is an abstract data type with shared variables and methods, similar to a C++ or Java class.

monitor example_mon {
shared variables;

procedure P1(...) {
...

}

procedure P2(...) {
...

}

...

24



CS 322 Operating Systems Spring 2010

initialization/constructor;
}

A monitor has a special property that at most one process can be actively executing in its methods
at any time. Mutual exclusion everywhere inside the monitor!

But if only one process can be in, and a process needs to wait, noother processes can get in.
So an additional feature of monitors is thecondition variable. This is a shared variable that has
semaphore-like operationswait() andsignal(). When a process in a monitor has to wait on
a condition variable, other processes are allowed in.

But when happens on a signal? If we just wake up the waiting process and let the signalling process
continue, we have violated our monitor’s rules and have two active processes in the monitor. Two
possibilities:

• Force the signaler to leave immediately

• Force the signaler to wait until the awakened waiter leaves

There are waiting queues associated with each condition variable, and with the entire monitor for
processes outside waiting for initial entry.

Note that monitors are a language construct. They can be implemented using OS-provided func-
tionality such as semaphores.

Also note the similarity between these monitors and Java classes and methods that use thesynchronized
keyword.

25


