Computer Science 322
M[] (C Operating Systems
_— Mount Holyoke College
MOUNT HOLYOKE COLLEGE Sprlng 2010

Topic Notes: File Systems

Disks and Disk Structures

We will consider disks and file structures in much more detaih most of the other types of I/O
devices.

Data is written to the surface of the disk. How can it be areaity
CD/DVD is arranged in a “spiral” for a continuous stream.

We’'ll concentrate on magnetic disks (floppy disk, hard disk) hard disk may have multiple
surfaces, or platters. For simplicity, assume there is onlydisk, or platter, involved.

A read/write head is needed for each platter.
The data on a disk is arranged in concentric rings caligithdersor tracks

Each cylinder of the disk is divided into chunks calgttorsthat containblocks the minimum
allocatable and addressable unit on the disk. Since theneiis space on the outside of the disk,
there may be more blocks in outer cylinders than there aramer icylinders.

The particular configuration of cylinders, sectors and tinaber of platters is thdrive geometry
The actual drive geometry may be difficult to determine, adeno disk drives lie, controllers lie,
and by the time you get the numbers they may be completely imglass.

So to read or write data on the disk, a cylinder and sector mesipecified. The read/write
head must be positioned over the desired cylinder and sether read/write heads are typically
connected to the end of a moveable arm. This arm is moved itiqgothe head at the correct
cylinder. When the disk rotates and the desired sector reatieeread-write head, the read or
write operation can proceed.

The speed of this operation depends on two major factors:

e seek time- the time it takes to move the read/write head to the corsdictder

o rotational latency- the time it takes for the correct sector to rotate underehd/write head

We can minimize seek time by minimizing the distance the /gatk head has to move in order
to service the incoming requests.

File System Interface

CS 322 Operating Systems Spring 2010

We switch focus now to talk about how to organize informatondisks.

Hopefully everyone has a good idea what we mean tig.a

¢ files can be data or programs
e can be simple or complex (plain text, or a specially-formchfile)
e structure of a file is determined by both the OS and the proghatcreates it

o files are stored in &@le systemwhich may exist

— on adisk
— on atape
— in main memory

Files have a number of attributes:

o filename

o file type (maybe)

¢ location —where is it on the device

e sSize

e protection/permissions (maybe)

e timestamp, ownership

e directory information
A number of operations can be performed on files, many of whiethave been doing without
giving it much thought:

e create

e write/append

e read

e seek (reposition within file)

e delete

e truncate

e open, close

CS 322 Operating Systems Spring 2010

File Types

How does a “type” get assigned to a file?

e can use file extension (.c, .exe, .doc, .tex, .mp3, etc.)

e file extension may or may not be functionally important — eiferot, they give the OS and
the user an hint as to the type of the file

— Windows uses an unenforced file extension registration

— Macintosh can enforce types within a file — special part ofeeddlled a “resource fork”
to store extra information including the application thagated it

— Unix uses “magic numbers”. See thel e command andusr/ shar ed/ m sc/ magi ¢
in FreeBSD/ et ¢/ magi c in Solaris.

File access may beequentialor direct Tapes support only sequential access, disk files may
support both.

Directories

A listing of the files on a disk is directory.

Directory Files

r

Both the directory structure and the files reside on the disk.
The directory may store some or all of the file attributes veea$sed.

A directory should be able to support a number of common adjoerst

e search for a file
e create afile

o delete afile

CS 322 Operating Systems Spring 2010

e rename afile
e listing of files
o filesystem traversat)

There are many ways to organize a directory, with differeméls of complexity, flexibility, and
efficiency. We will look at several possibilities.

e Single-Level Directory
The simplest method is to have one big list of all files on a.disk

Directory: Th| s| wil [dea

bbb

This can be used for a simple system. A disk for the C-64 workecdthis.

But, it breaks down pretty quickly:

— cannot have two files with the same name — could be necessanyftiple users/programs
on a disk

— no way to group files — just one big list
— searches need to look through the entire directory

e Two-Level Directory
We can create a separate directory for each user:

Master

Directory: userl |user2 |user3 |user4d
User / \ \
directories: have files t hree files

I S N S N A S R

— files now have a path nantaiser 1/ have
— different users can have the same file namesfer 2/ me and/ user 3/ ne)
— searching is more efficient, as only one user’s list needs welarched

4

CS 322 Operating Systems Spring 2010
— but still no grouping capability for a user’s files
e Tree-structured Directory
Something more reasonable and useable:
Root .

Directory: bi n ib ker nel

Files and Sub- / \ \

directories: ul u3 libmallibc. a

T

x traverse directoryqd)
x operate on files in current directory by default
x or specify path, eitherelative or absolute

— need to be able to create and remove directories as well as file
— consider: what happens when a non-empty directory is ditete

e Acyclic-Graph Directories

any directory entry can be either a file osabdirectory
files can be grouped appropriately
search is more efficient — follow the path
add concept of aurrent working directory

The tree model does not allow the same file to exist in more dmendirectory. We can
provide this by making the directory an acyclic graph.

Two or more directory entries can point to the same subdirgair file, but (for now) we

restrict it to disallow any directory entry pointing “back’uthe directory structure.

ul

u2 | conmon

/

e

mai | |proj | bashrc

mai |

pr o]

bashrc

pub

i cons

bashrc

CS 322 Operating Systems Spring 2010

These kinds of directory graphs can be made ubnig in the Unix world,shortcutsin the
Windows world, oraliasesin the Mac world.

We have multiple names for and multiple paths to the same file.
Unix links can be
— symbolicor soft link— specify a path to the file (logical) kn - s — original file is
“real” others are just pointing to that one

— hard link— actual link to the same file on the disk from multiple direets (physical)
—| n —all hard links are equal

This allows sharing of files, but introduces complicationshat happens when the file is
removed from one of the directories? If there may be moreeafes to the file, can we
delete it? With symbolic links, the file just gets deleted avelhave adangling pointer
With hard links, a reference count is maintained, and theaddile is only deleted when all
references to it are removed.

Demo: links.

e General Graph Directory
What if we allow links back up the chain?

Unix directories have this built in — all directories excép¢ system'’s root directory have a
special entry . that indicates the parent directory, and an enttpat indicates the current
directory.

But they also allow links to be created back “up the chain” efdirectory structures, poten-
tially introducing cycles in the directory graph.

home
dirl [filel
dir2 |file2 O

S

O

Demo: dirs

When general graph directories are allowed, we need to béutaigh command likef i nd
that search a directory and its subdirectories for somgthiine search is infinite if cycles
are followed. Typically, a program likei nd will not follow symlinks.

Problematic cycles can be avoided by allowing “up” links tedj not directories. Could also
run cycle detection every time a new link is added, if this @acern. Unix leaves it up to
programs to make sure they treat symlinks appropriately.

6

CS 322 Operating Systems Spring 2010

BSD 4.3 limits the number of links allowed to be traversed faoy given path name to 8 to
avoid undetected cycles. This limit is actually 32 in thereat version of FreeBSD, and 20
for Solaris.

See Example:
/[home/jteresco/ shared/ cs322/ exanpl es/ nor el i nks

Directory Implementation

In any case, an individual subdirectory will typically cairt a list of files. How to store this list?

e Linear list — list of names, each of which has a pointer to thesfidata blocks. This is
straightforward, but requires a costly search on largectbrees.

e Hash Table — hashed linear list — decrease search time, lvetcomplex to implement.
Another consideration: case sensitivity of filenames. Re¥éndows, MacOS filesystems have

filenames that remember case, but searches are case insendibst Unix filesystems are truly
case sensitive.

Disks and Partitions

A system may have a number of disks, each with one or rparetions. These are logical subdi-
visions of the physical disk, often created to help bettganize data on the disk.

Demo:df -kl

A partition is where a filesystem gets created (more on that)sdOnce we have a filesystem, we
need to make it accessible to the world.

In DOS/Windows, this typically involves assigning a letteeach partition. Then there is a direc-
tory hierarchy within each partition.

In Unix, there are no drive letters, everything is consideieebe part of one big hierarchy. One
partition forms the root directory { and all others arenountednto the structure it defines.

The places where partitions get mounted are caflednt pointsand are nothing more than regular
directories. When a partition is mounted onto a mount pohm, directory is replaced by the
contents of the partition mounted.

Demo: mounting

When the mount point directory is accessed Mintial file systentayer of the OS notices that the
directory has been used as a mount point, and sets the cdmmectory to the root of the partition
mounted there.

The partitions mounted can be of any type, but all appear todoeof the same directory struc-
ture. The system delivers requests to the appropriataipartand a filesystem-type-specific set of
operations are used to access the actual filesystem.

7

CS 322 Operating Systems Spring 2010

The list of partitions and their mount points and types asted in afile system tabldile. In
FreeBSD, it is located ihet c/ f st ab; in Solaris, itis/ et c/ vf st ab.

The partitions mounted may be remote as well as local — motkisisoon.

Disk Partitioning
Why might we partition a disk?

logical separation of types of files (bootable OS, systengganms, home directory space,
shared space, scratch space) for security or backup p@pose

want to run multiple OSs on the same system.

separate partition to use as virtual memory (“swap partijio

to get around OS limits on the size of a filesystem when a suhigleis larger than that limit.

How can we define these partitions? These are usually spbwaiith a system disk management
utility.

e DOS/Windows fdisk

o FreeBSD disklabel/bsdlabel
e MacOS Disk Utility

All of these do the same basic things. Break up the disk, yswaallcylinder boundaries, into
logical subunits.

Each of the partitions gets a device name, and in each of theseeate a filesystem.

The filesystem can then be mounted at a given mount point €itutiix world) or at a drive letter
in DOS/Windows.

Demo: fdisk

File System Implementation

Suppose we have partitioned a disk, and it's time to takeetkisk blocks that have been reserved
for our partition and create an actdéé systemo hold our files.

The OS could just provide access to the blocks and let pragesideal with everything, but that's
not very nice.

We want to provide those things that operating systems gmeosed to provide:

CS 322 Operating Systems Spring 2010

e convenience
e protection

o efficiency
Several issues need to be considered:

e how do we allocate disk blocks within our partitions to fileglairectories?
e how we decide what blocks are available?
e what is the complexity and efficiency of the choices we makefifose?
We have already talked about possible directory structiMest likely, these directory structures

will be implemented as files at some level. We’'ll need to be ablfind them on the disk just like
other files.

Allocation Methods

So first, we consider how disk blocks are allocated to files.

e Contiguous Allocation
Each file is allocated a set of contiguous disk blocks

T :
D Directory:
file start lengtt

ODDDD noo 5 3
ODEE 2 %
8 (][][]
2[00 00
w610
20 [] [JJEFE
24\ [
28I 1]
~

— similar to contiguous allocation of memory

— simple — directory entry needs only starting location (kloamber) and length (num-
ber of blocks)

— supports random access into files — can easily compute addhe®lock that contains
a certain part of the file.

— can lead to holes (external fragmentation)

9

CS 322 Operating Systems Spring 2010

— may be difficult to have a file grow

— reading should be very efficient, since consecutive blo¢kbefile can be stored in
consecutive blocks on the disk

e Extents

Extents are analogous to segmentation for memory allatatides are allocated as a col-
lection ofextentswhich are contiguous chunks of disk blocks. Each has arsgdstock and
asize.

e Linked Allocation

Each disk block has a pointer to the next disk block in the Slevall as some file data.

Directory

File Start End

noo 5 1

snow 30 0
14 15

— need to reserve part of each data block for a pointer — can reakedd-sized data
blocks

directory entry requires only starting block

easy to append to a file

no external fragmentation
no random access — have to traverse each block

a bad disk block means the entire file from that block on is lost

A variation on this is thé&ile Allocation Table (FATused by MS-DOS and pre-NT Windows
versions. This gathers the links into one table.

10

CS 322 Operating Systems Spring 2010

T :
N A Directory

File Start
O.DDD noo 5
«JEpmm| o
s]I
2@EO00| 3 ootn
16 [JE L] S
20 JUEE| 1612
24][J[][]] 20 6 | 7

— get to use the whole disk block for data
— a bad disk block means only that block is lost

— unless... the FAT itself goes bad, in which case we have algmob have backup
copies on the disk, then run your favorite rescue program

— somewhat better random access — traverse the FAT only — rglatildcks only for the
data stored there

— each disk block needs a FAT entry — total number of blocksuin total size of a
partition — is limited by the size of the FAT

— increased block size means fewer blocks/FAT entries, buénmbernal fragmentation

e Indexed Allocation

Use disk blocks amdex blockghat don’t hold file data, but hold pointers to the disk blocks
that hold file data.

Directory

File Index

noo 8

snow 31
2

2 830215

23 12
7 1
17 ECF
22
6
0
EOF

— directory entry now contains a pointer to the index block

11

CS 322 Operating Systems Spring 2010

each file’s index block contains pointers to all of its datackk
random access is similar to FAT

a bad data block costs only that block, bad index block coo#d the entire file

size of afile is limited by the number of pointers a data blcak ksold — if a block holds
512 bytes, and a pointer to a disk block takes 2 bytes, we mmrgetl to 256-block, or
128 KB files

— now even small files require two data blocks — extra disk reald potentially wasted
space

Can get around the file size limitation in a few ways:

— linked indexed allocatior use the last entry in the index block as a pointer to another
index block

% this removes file size limitations
* random access becomes a bit harder
— two-level index- the index block points only to other index blocks

« file size limitation is not as severe — for example above, filiskhow are addressed
by a 256-entry index block, each of which points to a 2563enmilex block, mean-
ing we can store 65536-block or 32 MB files.

x random access is better
x but all files take at least 3 blocks of space and access time

— Can add more levels for larger files

e Unix Inodes

Many Unix filesystems (Berkeley Fast Filesystem, Linux extBun ufs, ...) take an ap-
proach that combines some of the ideas above.

mode

owners (2)

timestamps (3)

> data
size block
count

direct blocks —

f

i

= o]
single indirect — . : ata
L. data »
double indirect r ey data

triple indirect L » _

rfle

i

—
™| data
| ~—{ data |

— each file is indexed by anode

CS 322

Operating Systems Spring 2010

inodes are special disk blocks set aside just for this perfgesedf -i to see how
many of these exist on your favorite Unix filesystem)

they are created when the filesystem is created

the number of inodes limits the total number of files/dirgiet® that can be stored in
the filesystem

the inode itself consists of

« administrative information (permissions, timestamps,)et

x a number of direct blocks (typically 12) that contain poistt® the first 12 blocks
of the file

x asingle indirect pointer that points to a disk block whiclum is used as an index
block, if the file is too big to be indexed entirely by the dirbtocks

x adouble indirect pointer that points to a disk block whica eollection of pointers
to disk blocks which are index blocks, used if the file is tog ta be indexed by
the direct and single indirect blocks

x a triple indirect pointer that points to an index block of éxdblocks of index
blocks...

interesting reading on your favorite FreeBSD systéswy s/ uf s/ uf s/ di node. h

— small files need only the direct blocks, so there is little twan space or extra disk

reads in those cases

— medium sized files may use indirect blocks
— only large files make use of (and incur the overhead of) thédldoar triple indirect

blocks, and that is reasonable since those files are largesgny

— since the disk is now broken into two different types of blweknodes and data blocks,

there must be some way to determine where the inodes arepdeep track of free
inodes and disk blocks. This is done bysaperblock located at a fixed position in
the filesystem. The superblock is usually replicated on thk @ avoid catastrophic
failure in case of corruption of the main superblock

Disk Allocation Considerations:

¢ limitations on file size, total partition size

¢ internal, external fragmentation

e overhead to store and access index blocks

e layout of files, inodes, directories, etc, as they affectqrerance — disk head movement,
rotational latency — many unix filesystems keep clustersofiés at a variety of locations
throughout the file system, to allow inodes and the disk dabley reference to be close
together

e may want to reorganize files occasionally to improve laydigl defragmenting, etc)

13

CS 322 Operating Systems Spring 2010

Free Space Management
With any of these methods of allocation, we need some wayep kack of free disk blocks.

Two main options:

1. bit vector— keep a vector, one bit per disk block

0 means the corresponding block is free, 1 means it is in use

search for a free block requires search for the first O bit beaefficient given hardware
support

vector is too big to keep in main memory, so it must be on didkctvmakes traversal
slow

with block size2'? or 4KB, disk size2? or 8 GB, we nee@?! bits (128 KB) for bit
vector (seems reasonable)

e easy to allocate contiguous space for files
2. free list— keep a linked list of free blocks

¢ with linked allocation, can just use existing links to forrfree list
with FAT, use FAT entries for unallocated blocks to storefiist

no wasted space

can be difficult to allocate contiguous blocks
allocate from head of list, deallocated blocks added tolaithO(1) operations

Alternative: keep a list of “extents” which is the addressdfee block and the number
of consecutive free blocks starting there

Performance Optimization

Disk Scheduling Algorithms

We can minimize seek time by minimizing the distance the /kgaté head has to move in order
to service the incoming requests.

Given a sequence of cylinders that must be visited to seiset of pending disk read/write
requests, the system can order the requests to minimizdisezk

This may be done by the disk, the hardware controller, or byofierating system.
We will compare algorithms by examining their performanoeaajivenrequest queue

Given a disk with 200 cylinders (0-199), suppose we have 8ipgrrequests:

14

CS 322 Operating Systems Spring 2010

98, 183, 37,122, 14, 124, 65, 67

and that the read/write read is currently at cylinder 53.
First-Come First-Served (FCFS)

We include this analog of FCFS CPU scheduling or FIFO pagecepiant mainly for comparison
purposes.

Requests are serviced in queue order, for a total of 640 @&/dsnof movement.
Shortest Seek Time First (SSTF)/Closest Cylinder Next
Service the request next that has the shortest movementt®ourrent position.

This is the analog of SJF CPU scheduling and OPT page replatgoe unlike those, it's feasible
here, since we do have an actual request queue (some “futavdddge”) available to us.

In our example:

65, 67, 37, 14, 98, 122, 124, 183

The total seek distance is 236 cylinders.

Potential problem: if many requests keep arriving near wilee disk head is positioned, distant
requests may be starved.

SCAN or Elevator Algorithm

When an elevator is going in one direction, it stops at all theri where there is a pending request.
Then it reverses direction and does the same thing.

With this algorithm, the disk arm does just this. Serviceuesis in one direction, then reverse
direction.

In our example, assuming we are “going down” at the start:

37, 14, (0), 65, 67, 98, 122, 124, 183

236 cylinders again. It is a coincidence that this is the sasn8STF.

Note that the disk arm went all the way to 0, even though thenewo requests below 14. This is
because this particular algorithm doesn’t look aheadsitjooves back and forth from one end to
the other.

We can take care of that extra movement down to O with ...

LOOK Algorithm

It's the same as SCAN, but the head reverses direction as sdber@ are no pending requests in
the current direction.

15

CS 322 Operating Systems Spring 2010

The movement is the same as SCAN, just without that move froto D4and then up to 65. This
reduces the movement to 208 cylinders.

Both SCAN and LOOK can lead to non-uniform waiting times. A resfunear one end of the disk
sometimes needs to wait for two sweeps across the disk, ofhiér times it will be serviced very
quickly. Requests near the middle have a more uniform avevageng time.

Circular Algorithms

This problem can be addressed using circular versions of SCCASICAN) and LOOK (C-LOOK),
where when the disk arm gets to the end of the disk, it jumpsadiately back to the other end.

Assuming the disk services requests only when “going upf,example using these algorithms
are served in order:

65, 67, 98, 122, 124, 183, 14, 37

With C-SCAN, the head goes all the way to 199 and all the way ba€k giving total movement
of 382. With C-LOOK, we do not need to go up past 183 or down péshiaking the movement
total 322.

The penalty of the movement all the way back in the other izrenay not be as large as it seems.
Think of the mechanics of the situation — starting and stogpihe disk arm takes more time than
simply sweeping all the way across with just one accelemaimd deceleration.

Comparing Disk Scheduling Algorithms

SSTF or LOOK are often reasonable for a default algorithm

SCAN and C-SCAN are better for heavily loaded systems where L@&QKlikely to save
much and SSTF runs the risk of starvation

performance depends on the frequency and types of requests

we may want to consider some of this when thinking about hoarganize file systems

FreeBSD’s ufs filesystem (the default for FreeBSD) uses aratdealgorithm. Here is the com-
ment at the top of filé sys/ uf s/ uf s/ uf s_di sksubr. c:

Seek sort for disks.

The buf queue keep two queues, sorted in ascending block order. The first
gueue hol ds those requests which are positioned after the current bl ock

(in the first request); the second, which starts at queue->sw tch_point,

hol ds requests which cane in after their bl ock nunber was passed. Thus

we i nplement a one way scan, retracting after reaching the end of the drive
to the first request on the second queue, at which tinme it becones the

b I I I . T T T R

16

CS 322 Operating Systems Spring 2010

first queue.

A one-way scan is natural because of the way UN X read-ahead bl ocks are
al | ocat ed.
/

* Ok ok k¥

Disk Cache
Caching is an important optimization for disk accesses.

A disk cache may be located:

e Mmain memory
e disk controller
e internal to disk drive

For a lecture assignment, you will read about a strategy bhgedany Unix variants to use main
memory as a disk cache: thaffer cache

Safety and Recovery

When a disk cache is used, there could be data in memory thédueleams“written” by programs,
which which has not yet been physically written to the diskislcan cause problems in the event
of a system crash or power failure.

If the system detects this situation, typically on bootugrasuch a failure, aonsistency checker
is run. In Unix, this is usually thésck program, and in Windowscandi sk or some variant.
This checks for and repairs, if possible, inconsistencigbe filesystem.

Demo: fsck

Journaling Filesystems

One way to avoid data loss when a filesystem is left in an insterd state is to move tolag-
structuredor journaling filesystem.
e record updates to the filesystemtemnsactions

e transactions are written immediately to a log and the adsotommitted by the OS (the
application can continue), though the actual filesystem nmyet be updated

e transactions in the log are asynchronously applied to thebfilesystem, at which time the
transaction is removed from the log

17

CS 322 Operating Systems Spring 2010

o if the system crashes, any pending transactions can beedpialithe filesystem — main
benefits are less chance of significant inconsistenciesthadhose inconsistencies can be
corrected from the unfinished transactions, avoiding thg lmonsistency check

e Examples:

— ReiserFS, sebt t p: / / ww. nanesys. com a linux journaling filesystem — | rec-
ommend reading this page

— ext3fs, also for linux

— jfs, seehttp://jfs. sourceforge. net/, IBM journaling filesystem, available
for AlIX, Linux

— Related idea in FreeBSD’s filesystem: Soft Updates,hddep: / / www. f r eebsd.
or g/ doc/ enUS. | SOB859- 1/ books/ handbook/ confi gt uni ng- di sk. ht m

— Journaling extensions to Macintosh HFS disks
— NTFS does some journaling, but some claim it is not “fullyrjoaied”

e the term “journaling” may also refer to systems that mamthe transaction log for a longer
time, giving the ability to “undo” changes and retrieve ayiwas state of a filesystem

Final Words on File Systems

Things to consider when working with file systems:

e how to partition the disk

how to organize blocks within a partition to form a file system

structure of directories

allocation of space for files

free space management

RAID

To this point, we have talked about “partitions” as subdons of an individual disk. It is also
possible to have a logical “partition” span multiple disksid to create a filesystem within that
logical partition.

RAID — Redundant Array of Independent/Inexpensive Disks

e multiple disks to provide reliability through redundancy

18

CS 322 Operating Systems Spring 2010

o efficiency — work can be spread across a number of disks ordiskrrontrollers

e convenience of one large partition instead of many smalsone

My experience with RAID: the former bullpen cluster:
12 disks, 18 GB each. Connected to one Wide-SCSI controllee siistem sees it as one big
partition:

> df -k /export/raid
Fil esystem kbyt es used avail capacity Munted on

[dev/ dsk/ c1t 5d0s6 191175687 25709437 163554494 14% /[export/raid

Yes, at the time it was a big deal to have 191GB of space. It W& .2Things were different.

There are many ways to organize a RAID (Tanenbaum, Figure’5-19

@ oy om0
—_— A~ A A
Strip 0 Strip 1 Strip 2 Strip 3
o foe——1 P——] —oo
{a) | Strip 4 Strip 5 Strip 6 Strip 7 | RAID level 0
e B S) N N e |

Strip 8 Strip8 | |Strip10) | Strip 11
e e e e

Strip 0 Strip 1 Strip 2 Strip 3 Strip0 Strip 1 Strip 2 W
P P e P — — P——— ———

RAID
by | Strip 4 Strip 5 Strip 6 Strip 7 Strip 4 Sirip & Sirip & Sfirip 7
b (e} LSwps) LSrpe) (i) (R R PR L
Strip 8 Strip 9 | | Strip 10| | Strip 11 Srip s Strip9 | [Strip 10
e e N e el NSRRI e

(ch RAID leval 2
P! e M M e P e

Parity

{d} RAID leval 3

e] e]
Strip 3 Po-3
T R

(&) | Strip 4 { i Strip 7 P4-7 | RAID level 4
swip11) | P&-11
o S - T

e il s, R e P e
—~ — = — ——1 —

Strip 0 Strip 1 Sirip 2 Strip 3 Po-3
P el P e R, P

Strip 5 Strip 6 Pa-7 Strip 7
P el P P P
T Stripg Pa-11 Sirip 10 | Strip 11| AAID leval 5
P12-15] | Strip 13| | Strip 14 Strip 15
P 1 e 1 P 1
Strip 16| | Strip 17| | Strip 18] | Strip 18

19

CS 322 Operating Systems Spring 2010

e RAID Level 0

— basically just paste together a bunch of disks to see themeabig partition
— striping
— not really a RAID, as it is not redundant

— reliability: one disk failure results in potential loss oftee partition! Actually lower
the MTBF (mean time between failures)

— little or no overhead on writes
— 100% of disk space is usable for storage

e RAID Level 1

mirroring

reliability: any failed disk can be reconstructed from itsnar with a simple copy
all writes must be written to two disks

reads can come from either of two disks — spread out the load

50% of disk space is usable for storage
e RAID Level 2

— use 7 synchronized disks to store 4 disks worth of data

— for each 4 bits, compute a 7-bit Hamming-coded (seep: / / mat hwor | d. wol fram
com Hanmm ngCode. ht M word

— Hamming codes are self-correcting for one error, can détecerrors
— 57.1% of disk space is usable for storage

e RAID Level 3

— like RAID-2, but use a single parity bit
— still can recover a lost disk using the parity bit

two lost disks means entire patrtition is lost

can work with any number of disks

can include multiple parity disks

space overhead of the parity disk(s)
e RAID Level 4

— use stripes for parity unit, allowing disks to work indepenty
— still can recover a lost disk
— parity disk can be a bottleneck as all writes require a watie parity disk

20

CS 322 Operating Systems Spring 2010

— space overhead of the parity disk(s)
e RAID Level 5

— like RAID-4, but parity bit is distributed across all disks
— This is what | had in bullpen and it actually worked when ditiked

e RAID Level 6
— Like RAID-5 but with error correcting codes
e RAID Level 0+1, 1+0

— Combine RAID Level 0O (for striping/efficiency) with RAID Level (for redundancy)
Where does this happen?

e RAID controller —work is done by hardware, OS sees a singlesdri
e kernel/device driver — work is done by the OS in software — @&sulisks independently,
but presents them to “users” as a single unit

In FreeBSD see “vinum” and in Linux see the MD driver and the HA@Vht t p: / / www.
t | dp. or g/ HOMQ Sof t war e- RAI D- HOMO. ht m)

Hierarchical Storage

Recall our memory hierarchy:

Regs Small, fast, expensive

Cache

/ Main Memory \
/Disk/VirtuaI Memory\

/Tape, Remote Access, etc.\ Large, slow, cheap

Just as virtual memory uses disks to simulate a larger mamang tapes and other removeable
media can be used to simulate a larger disk.

21

CS 322 Operating Systems Spring 2010

extend the filesystem
small and frequently-used files remain on disk
large, old, rarely-used files are archived on tapes

when one of the old files is requested, the file is brought bats the disk from the appro-
priate tape

usually implemented as a jukebox of tapes or removeables disk
tape latency is typically 1000 times that of a disk
add in a tape robot that has to go fetch a tape and it is everewors

or worse yet, a human who has to be notified, go to the “tape rolomd the tape, bring it
to the drive, load it

These systems are found at large supercomputing centers.

HPSS — High Performance Storage Systemhsde: / / ww. sdsc. edu/ hpss/ hpss1.
ht m

Unitree, sedt t p: / / ar chi ve. ncsa. ui uc. edu/ SCD/ Har dwar e/ Uni Tr ee/

Other issues:

how to decide when to archive to tape

retrieval from archive may be fully automated or users magdn® explicitly request files
from tapes

duplicate tapes? — tapes can be unreliable

when is this worthwhile? Can’t we just archive informationmaally?

22

