
Computer Science 322
Operating Systems
Mount Holyoke College
Spring 2008

Topic Notes: Unix Systems Programming

Quote: UNIX system calls, reading about those can be about asinteresting as reading the phone
book... – George Williams, 3/12/91

We will consider several aspects of Unix systems programming, focusing first on those things you
will need for the shell project.

Error checking/reporting
Most Unix system calls may fail for a variety of reasons. You should always check the return value
of system calls that may fail. The reason for a failure in theerrno variable. A list of errors can
be found inintro(2).

The system callsperror(3) andstrerror(3) allow you to print out (hopefully) meaningful
error messages when you detect a failed system call.

See Example:
/cluster/examples/perror

With Unix system calls, there are a lot of good reasons that something can fail. It’s worth your
trouble to check these return conditions and print meaningful error messages.

Process Management
You need to use a number of Unix system calls related to process management to implement the
shell. We have seen a few of these:

getpid() – get current process ID

getppid() – get parent’s process ID

fork() – duplicate process. Child is a copy of the parent - in execution at the same point, the
statement after the return fromfork().

The return value indicates if you are child or parent. 0 is child, > 0 means parent, -1 means failure
(limit reached, permission denied)

Example:

pid=fork();
if (pid) {

parent stuff;



CS 322 Operating Systems Spring 2008

}
else {

child stuff;
}

exit() – terminate a process. If it’s a child, it waits for its parentto accept its return code. If this
doesn’t happen, the child is called a “zombie” process.

To avoid this – callwait() (or waitpid()) from the parent – parent stops and waits for the
child to terminate (callexit() or exit()).

Returns PID of child, and in its argument, the status includesthe value the child passed toexit().

Recall example from earlier:

See Example:
/cluster/examples/forking

Be careful not to confuse this wait() with the wait() operation on semaphores!

Running a new program –exec calls
fork() lets you have two copies of a process – the same process. Sometimes this is just what
you want, but what if you want to start a new process running some other program.

To create processes that do other stuff, thefork() is followed by one of these “exec” calls, in the
child process:

execl() – exec a process with list of arguments

execv() – exec a process with args specified in an array

execlp() – list, but search the existing path for the program.

execvp() – array, but search the existing path for the program.

execvP() – array, but specify a search path for the program.

The man pages have details.

Aside on search paths:

The relatedvfork() system call is often more appropriate when the child processwill be doing
anexec() immediately. It doesn’t duplicate all of the memory for the parent process. Beware:
this may cause you trouble in the shell if you use it, since theparent is usually suspended until the
child exits or calls anexec.

See Example:
/cluster/examples/exec

1. Start by looking atexec:

2



CS 322 Operating Systems Spring 2008

• execlp parameters: program to run, arguments

• this is a varargs function call – we can send any number of parameters

• see what happens if we exec something not in thePATH (try it)

• can specify fully-qualified path

2. Look atprocinfo program:

• just print some information about the process

• pid, arguments (including one beyond the last)

3. Useexecprocinfo to execute it. Note thatargv[0] isn’t always the command that was
executed – just whatever was passed as the second parameter to theexec.

4. Tryexec2:

• sometimes an array of parameters is more convenient:execvp()

5. Tryexec2nonull:

• what if we forget theNULL?

• what if we have aNULL, but not right away?

6. Tryexecwithargs:

• note that it works as expected

• note the use of theargv as passed in (exceptargv[0] – that would be a problem –
try it).

• useexecwithargs to exec itself

• and itself followed by something else

• have it exec something that’s not in the path

Signals
Unix processes can communicate by sending each othersignals.

Typekill -l at your favorite Unix prompt to see the names of the signals itsupports.

kill -SIGNAL pid will send signalSIGNAL to a processpid:

-> sleep 60&
[1] 96132
-> kill -TERM %1
[1]+ Terminated sleep 60
-> sleep 60&

3



CS 322 Operating Systems Spring 2008

[1] 96133
-> kill -STOP %1
[1]+ Stopped sleep 60
-> kill -CONT %1
-> jobs
[1]+ Running sleep 60 &
->
[1]+ Done sleep 60
->

Every process hassignal handlers that are used to respond to signals sent to the process. Basically,
it’s a function that gets calledasynchronously when a signal is received.

A default signal handler is installed when a process begins.

Two system calls are used to send and catch signals:

signal() – replace default handler. Lets youtrap many signals and handle them appropriately.

Be careful not to confuse this signal() with the signal() operation on semaphores!

See Example:
/cluster/examples/signals

Example: A compute-bound process that “wakes up” every 5 seconds to report on its progress.
See:sigalrm-example.c

Note the use ofsetitimer(2).

We can ignore a signal completely by setting its handler toSIG IGN, and restore the default
handler withSIG DFL.

Enhanced example:sigalrm-example2.c

A process can also send signals withkill(). Don’t let the name fool you, you can send any
signal withkill(), not justSIGKILL.

Note thatSIGTERM’s handler sends the process aSIGINT.

Note that we do not trapSIGSTOP andSIGCONT, we can try these out.

Note that we do not trap other signals, likeSIGUSR1.

Note:SIGCHLD will be useful for your shell projects.

Low-level File Operations
You may (or may not) be familiar with the C standard file I/O routines defined instdio.h, such
asfopen(), fscanf(), fprintf(), andfclose(). These provide relatively “high-level”
access to files in that you deal with data types rather than a low-level stream of bytes.

Underneath the stdio functions, you will find those low-level operations:open(), close(),

4



CS 322 Operating Systems Spring 2008

read(), write().

The man pages describe these in great detail.

See Example:
/cluster/examples/everyother.c

Note that there are three automatic file descriptors:

0 stdin
1 stdout
2 stderr

These operate only on raw data and pay no attention to data type or any formatting.

Pipes
Processes may wish to send data streams to each other. Unixpipes are one way to achieve this.
You’ve almost certainly used Unix pipes at the command line.You can also use them in programs.

An unnamed pipe can be created using the

int pipe(int fd[]);

system call.fd is an array of twoint values. These are file descriptors, very similar to the file
descriptors used for file I/O usingopen(), read(), andwrite().

fd[0] is the “read end” andfd[1] is the “write end”. 0 return means success. -1 means failure.

read() andwrite() again operate only on basic streams of bytes – any structure must be
added.

See Example:
/cluster/examples/pipes

An example of communication between two processes, a parentand its child created byfork(),
communicating via an unnamed pipe is inpipe1.c

This required the shared values offd. This is fine when you create your pipe just before afork(),
but what if we have two processes already in existence that wish to communicate through a pipe?

We can create anamed pipe with mkfifo (command or system call).

We can make our simple example use the named pipe:pipe2.c

We can make an example that’s a little more interesting, where two independent processes com-
municate through a pipe:pipeprocs.c

Duplicating file descriptors

We can use thedup2() system call to reroute things that were going to one file descriptor into
another file descriptor. This is how your I/O redirection andpipes will work in the shell.

5



CS 322 Operating Systems Spring 2008

See exampleexecredir.c

Note that we don’t close the file here and in fact are not given an opportunity to do so.

We have seen that you can also obtain file descriptors fromopen(), pipe()

Note that the fd’s at the ends of a pipe can be passed todup2() – this will be useful – set the
output of one process to be the input of another through a pipe.

Other C that you may find useful

• gcc’s-Wall option: use it!

• gdb andddd are available on FreeBSD.

• Do not assume anything is initialized to something sane like0 orNULL.

• String operations: man string

• Staying object oriented – we discussed this before

• Take care withmalloc() andfree() – when you add amalloc(), immediately add
the correspondingfree() in an appropriate place.

6


