Computer Science 322
M[] (C Operating Systems
_— Mount Holyoke College
MOUNT HOLYOKE COLLEGE Sprlng 2008

Topic Notes: Process Synchronization

Cooper ating Processes
An Independent process is not affected by other running processes.
Cooperating processes may affect each other, hopefully in some controlled way.

Why cooperating processes?

e information sharing
e computational speedup

e modularity or convenience

It's hard to find a computer system where processes do notecatgp Consider the commands
you type at the Unix command line. Your shell process and thegss that executes your com-
mand must cooperate. If you use a pipe to hook up two commaodshave even more process
cooperation (See the shell lab later this semester).

For the processes to cooperate, they must have a way to caoateuwith each other. Two com-
mon methods:

e shared variables — some segment of memory accessible tplumtbsses

e Mmessage passing — a process sends an explicit messaga¢aaived by another

For now, we will consider shared-memory communication. \Al& ghat threads, for example,
share their global context, so that is one way to get two m®ee (threads) to share a variable.

Producer-Consumer Problem

The classic example for studying cooperating processéeg iBtoducer-Consumer problem.

Producer b > N Consumer

Buffer

CS 322 Operating Systems Spring 2008

One or more produces processes is “producing” data. Theidadtored in a buffer to be “con-
sumed” by one or more consumer processes.

The buffer may be:

¢ unbounded — We assume that the producer can continue producing itethstaring them
in the buffer at all times. However, the consumer must waitaio item to be inserted into
the buffer before it can take one out for consumption.

e bounded — The producer must also check to make sure there is spadeldean the buffer.

Bounded Buffer, buffer sizen
For simplicity, we will assume the objects being produced emnsumed arent values.

This solution leaves one buffer entry empty at all times:

e Shared data

int buffer[n];
int in=0;
i nt out =0;

e Producer process
while (1) {
io.r;)duce item
\.Nﬁi.le (((intl)%) == out); /* busy wait =/

buffer[in]=item
i n=(i n+l) %n;

e Consumer process

while (1) {
while (in==out); /+* busy wait =/
item=buffer[out];
out =(out +1) %n;

consune item

CS 322 Operating Systems Spring 2008

See Example:
/ cl ust er/ exanpl es/ prodcons- shmrem

See Example:
/ cl ust er/ exanpl es/ prodcons- pt hr eads

Is there any danger with this solution in terms of concury@n®emember that these processes
can be interleaved in any order — the system could preempirtiticer at any time and run the
consumer.. Things to be careful about are shared referémeasiables.

Note that only one of the processes candify the variables n andout . Both use the values,
but only the producer modifiasn and only the consumer modifieait . Try to come up with a
situation that causes incorrect behavior — hopefully younoa

Perhaps we want to use the entire buffer...let's add a Martalkeep track of how many items are
in the buffer, so we can tell the difference between an empdyaafull buffer:

e Shared data

int buffer[n];
int in=0;
i nt out =0;
i nt counter=0;

e Producer process
while (1) {
produce item

while (counter==n); /* busy wait =x/
buffer[in]=item

i n=(i n+1) %;

count er =count er +1;

}

e Consumer process

while (1) {
while (counter==0); /* busy wait =x/
i temebuffer[out];
out =(out +1) %n;
count er =counter -1,

consune item

CS 322 Operating Systems Spring 2008

We can now use the entire buffer. However, there is a polatdiager here. We modifgount er
in both the producer and the consumer.

See Example:
/ cl ust er/ exanpl es/ prodcons- shnem

See Example:
/ cl ust er / exanpl es/ prodcons- pt hr eads

Everything looks fine, but let’s think about how a computeluatly executes those statements to
increment or decremegbunt er .

count er ++ really requires three machine instructions) lpad a register with the value of
count er’s memory location,) increment the register, andi4{) store the register value back
in count er’s memory location. There’s no reason that the operatingesysan’t switch the
process out in the middle of this.

Consider the two statements that modityunt er :

Producer | Consumer
P, RO = counter; C;y Rl = counter;
P, RO = RO + 1; C;, RL =Rl - 1,
P; counter = RO; C; counter = Ri;

Consider one possible ordering; P, C, P; Cs C5, wherecount er =17 before starting. Uh oh.
What we have here israce condition.

You may be thinking, “well, what are the chances, one in aiomlthat the scheduler will choose
to preempt the process at exactly the wrong time?”

Doing something millions or billions of times isn’t realligat unusual for a computer, so it would
come up..

Some of the most difficult bugs to find in software (often in i@mg systems) arise from race
conditions.

This sort of interference comes up in painful ways when “rpebcesses are interacting.

Consider two processes modifying a linked list, one insgréind one removing. A context switch
at the wrong time can lead to a corrupted structure:

struct node {

struct node =*next;

}

struct node xhead, =*tail;

void insert(val) {
struct node *newnode;

CS 322 Operating Systems Spring 2008

newnode = get node();

newnode- >next = NULL;

if (head == NULL){
head = tail = newnode;

} else { /|l <==== THE WRONG PLACE
tail ->next = newnode;
tail = newnode;

}

voi d renove() {
/[l ... code to renove value ...
head = head- >next;
if (head == NULL) tail = NULL;
return (val ue);

}

If the process executing insert is interrupted at “the wrplage” and then another process calls
remove until the list is empty, when the insert process resynt will be operating on invalid
assumptions and the list will be corrupted.

In the bounded buffer, we need to make sure that when one gg@tarts modifyingount er,
that it finishes before the other can try to modify it. Thisuggssynchronization of the processes.

Process synchronization is one of the major topics of thiss® and one of the biggest reasons |
think every undergraduate CS major should take an OS course.

If there were mutliple producers or consumers, we would tia@same issue with the modification
of i n andout , so we can't rely on the “empty slot” approach in the more gelnease.

We need to make those statements that increment and ded¢remeart er atomic.

We say that the modification afount er is acritical section.

Critical Sections

The Critical-Section problem:

e 1 processes, all competing to use some shared data
e each process has a code segment (the critical section) ahwhared data is accessed
while (1) {

<CS Entry>
critical section

CS 322 Operating Systems Spring 2008

<CS Exit>
non-critical section

¢ Need to ensure that when one process is executing in itsairgection, no other process is
allowed to do so

Example: Intersection/traffic light analogy
Example: one-lane bridges during construction

Any solution to the critical section problem must satisfget conditions:

1. Mutual exclusion: If processP, is executing in its critical section, then no other processe
can be executing in their critical sections. “One at a time.”

2. Progress. If no process is executing in its critical section and thexest some processes
that wish to enter their critical section, then the selectbthe processes that will enter the
critical section next cannot be postponed indefinitely. tinoecessary waiting.”

3. Bounded waiting: A bound must exist on the number of times that other prosease al-
lowed to enter their critical sections after a process hadenaarequest to enter its critical
section and before that request is granted. “no starvatfgve must assume that each pro-
cess executes at non-zero speed, but make no assumptionsedative speeds of processes)

One possible way to deal with this is to make sure the prokiernantext switch doesn’t happen.

If we disable interrupts so a context switch isn’t possiblel@e/we’re executing the critical section,
we will prevent the interference.

However, this is a bit extreme, since it doesn't just restwother process that will be modify-
ing the same shared variable from being switched in, it presv&NY other process from being
switched in.

This approach would also not work in a multiprocessor emvitent when the interference could
be from two processes running truly concurrently.

Algorithmic Approachesfor 2 Processes

We first attempt to solve this for two processéy,and P,. They share some variables to syn-
chronize. We fill inkCS Ent r y>and<CS Exi t > from above with code that should satisfy the
three conditions.

Critical Section Algorithm 1

e Shared data

CS 322 Operating Systems

i nt turn=0;
e Process’; (definej = 1 — i, the other process)

while (1) {
while (turn!'=i); /* busy wait =*/

[+ critical section */
turn=j;
/* non-critical section */

}

Spring 2008

Note the semicolon at the end of the while statement’s cmmdét the line labeled “busy wait”
above. This means th&t just keeps comparingur n toi over and over until it succeeds. This
is sometimes called spin lock. For now, this is our only method of making one process waiit fo

something to happen. More on this later.

This does satisfy mutual exclusion, but not progress (adt#on is forced).

Critical Section Algorithm 2

We’ll avoid this alternation problem by having a processtwaly when the other has “indicated

interest” in the critical section.

e Shared data
bool ean fl ag[2];
fl ag[0] =f al se;
fl ag[1] =f al se;
e Process’
while (1) {
flag[i]=true;
while (flag[j]);
[+ critical section =/

flag[i]=fal se;

/* non-critical section =/

CS 322 Operating Systems Spring 2008

flag[i] settot r ue means thaP, is requesting access to the critical section.
This one also satisties mutual exclusion, but not progress.

Both can set their flags, then both start waiting for the otbesetf | ag[j] back to false. Not
going to happen...

If we swap the order of thél ag[i]=true; andwhile (flag[j]); statements, we no
longer satisfy mutual exclusion.

Critical Section Algorithm 3

We combine the two previous approaches:

e Shared data

i nt turn=0;

bool ean fl ag[2];
fl ag[0] =f al se;
flag[1] =f al se;

e Process’,

while (1) {
flag[i]=true;
turn=sj;
while (flag[j] && turn==5));

[+ critical section */
flag[i]=fal se;
/* non-critical section =/

}

So, we first indicate interest. Then we sefr n=j ; , effectively saying “no, you first” to the other
process. Even if both processes are interested and both tjet tvhile loop at the “same” time,
only one can proceed. Whoever setr n first gets to go first.

This one satisfies all three of our conditions. This is knowReterson’s Algorithm.
Peterson’s Algorithm in action:

See Example:
/ cl ust er/ exanpl es/ prodcons- pt hr eads

Algorithmic Approach for n Processes. Bakery algorithm

8

CS 322 Operating Systems Spring 2008

Can we generalize this for processes? The Bakery Algorithm (think deli/bakery “nowsey
customerX” systems) does this.

The idea is that each process, when it wants to enter theatrgection, takes a number. Whoever
has the smallest number gets to go in. This is more complexttieabakery ticket-spitters because
two processes may grab the same number (to guarantee thavdbédn’t would require mutual
exclusion — exactly the thing we're trying to implement)ddrecause there is no attendant to call
out the next number — the processes all must come to agre@meviio should proceed next into
the critical section.

We break ties by allowing the process with the lower procésatifier (PID) to proceed. Fap;,
we call iti. This assumes PIDs from 0 to— 1 for n processes, but this can be generalized.

Although two processes that try to pick a number at aboutdheetime may get the same number,
we do guarantee that once a process with numbeiin, all processes choosing numbers will get
a number> k.

Notation used below: an ordered pamunber, pid) fully identifies a process’ number. We
define dexicographic order of these:

e (a,b) < (c,d)isa<corifa=candb<d
The algorithm:

e Shared data, initialized to O's and false

bool ean choosi ng[n];
int nunber[n];

e Process’,

while (1) {

choosi ng[i]=true;
nunber [i] =max(nunber [0], nunber[i], ..., nunber[n-1]) +1;
choosi ng[i] =f al se;
for (j=0; j<n; j++) {

whil e (choosing[j]);

while ((number[j]!=0) &&

((number[j],j) < (nunber[i],i)));

[+ critical section */
nunber[i] =0;

/* non-critical section =/

CS 322 Operating Systems Spring 2008

Before choosing a number, a process indicates that it is dmindhen it looks at everyone else’s
number and picks a number one larger. Then it says it's dooesihg.

Then look at every other process. First, wait for that preces to be choosing. Then make sure
we are allowed to go before that process. Once we have shabesiecided that it's safe to go
before every other process, then go!

To leave the CS, just reset the number back to 0.

So great, we have a solution. But...problems:
1. That’s a lot of code. Lots of while loops and for loops. Cooddexpensive if we're going to
do this a lot.

2. If this is a highly popular critical section, the numbergyht never reset, and we could
overflow our integers. Unlikely, but think what could happiewe did.

3. It's kind of inconvenient and in some circumstances, aso@able, to have these arrays:of
values. There may not always herocesses, as some may come and go.

Synchronization hardware

Hardware support can make some of this a little easier. Pnoblcan arise when a process is
preempted within a single high-level language line. But we'tcareempt in the middle of a
machine instruction.

If we have a single machine instruction that checks the vafugevariable and sets @omically,
we can use that to our advantage.

This is often called dest-and-Set or Test and Set Lock instruction, and does this, atomi-
cally:

bool ean Test AndSet (bool ean *target) {
bool ean orig _val = =*target;
*target = TRUE
return orig_val;

So it sets the variable passed in to true, and tells us if ittvesesor falsebefore we called it. So if
two processes do this operation, both will set the valueasfget to true, but only one will get a
return value of false.

This is the functionality we want, but how does the instrmctactually work?

Really, this would be an instruction that takes two operands:

TAS R, X

10

CS 322 Operating Systems Spring 2008

WhereR is a CPU register an¥ is a memory location. After the instruction completes (atom
cally), the value that was in memory4is copied intoR, and the value oKX is set to 1.R contains
a 0 if X previously contained a 0. If two processes do this operatancturrently, only one will
actually get the O.

The Intel x86BTS instruction sets a single bit in memory and sets the carrgftilte status word
to the previous value. This is equivalent.

Think about how you might implement an atomic test and sefarexample, a microprogrammed
architecture.

Any of these can be used to implement a “test and set” funetsothescribed above.

Armed with this atomic test-and-set, we can make a simpleuatugxclution solution for any
number of processes, with just a single shared variable:

e Shared data
bool ean | ock = fal se;
e Process’,

while (1) {
whil e (TestAndSet (& ock)); /* busy wait =/

[+ critical section */
| ock = fal se;

[+ non-critical section =/

This satisfies mutual exclusion and progress, but not balm@éting (a process can leave the CS
and come back around and grab the lock again before othersahde waiting ever get a chance
to look).

A solution that does satisfy bounded waiting is still faickymplicated:

e Shared data

bool ean | ock=f al se;
bool ean waiting[n]; /* all initialized to false */

e Process’ and its local data

11

CS 322 Operating Systems Spring 2008

int j;
bool ean key;

while (1) {
wai ting[i]=true;
key=true;
while (waiting[i] && key)
key = Test AndSet (& ock);
wai ting[i]=fal se;

[+ critical section */

j =(i +1) %n;

while ((j'=i) & '"waiting[j])
j=(j +1) %;

if (j==1) lock=false;

el se waiting[j]=fal se;

/* non-critical section =/

Another hardware instruction that might be available isatmmicswap operation:

voi d swap(bool ean *a, bool ean *b) {
bool ean tenp = *a;
xa = xp;
*b = tenp;

Different architectures have variations on this one, idirlg the x86XCHG instruction.

An algorithm to use this, minus the bounded wait again, egitforward:
e Shared data
bool ean | ock = fal se;
e Process’,
bool ean key = true;
while (1) {

while (key == true) swap(&key, & ock); [/* busy wait =/

12

CS 322 Operating Systems Spring 2008

[+ critical section */
| ock = fal se;

/* non-critical section =/

It's pretty similar to what we saw before wifest AndSet () .

Semaphores

All that busy waiting in all of our algorithms for mutual exdion is pretty annoying. It's just
wasted time on the CPU. If we have just one CPU, it doesn’t makeestor that process to take
up its whole quantum spinning away waiting for a shared W&ito change that can’t change until
the current process relinquishes the CPU!

This inspired the development of tsemaphore. The name comes from old-style railroad traffic
control signals (sekt t p: / / ww. semaphor es. com, where mechanical arms swing down to
block a train from a section of track that another train igently using. When the track was free,
the arm would swing up, and the waiting train could now pracee

A semaphore is basically an integer variable, with two atomic operasion

wai t (S):
while (S <= 0); /* wait =/
s-;

signal (S):
S++;

wai t andsi gnal are also often calledown andup (from the railroad semaphore analogy) and
occasionally are calle® andV (because Dijkstra, who invented them, was Dutch, and these a
the first letters of the Dutch worgsoberen (to test) andrerhogen (to increment)).

Important!!! Processes using a semaphore in its most pure form are notdlko set or examine
its value. They can use the semaphamby through thenai t andsi gnal operations.

Note, however, that we don’t want to do a busy-wait. A prodhas has to wait should be put to
sleep, and should wake up only when a corresponslirgnal occurs, as that is the only time the
process has any chance to proceed.

Semaphores are built using hardware support, or using adttechniques such as the ones we
discussed for critical section management.

Since the best approach is just to take the process out oé#luly Igueue, some operating systems

13

CS 322 Operating Systems Spring 2008

provide semaphores through system calls. We will examiag tmplementation in this context
soon.

Given semaphores, we can create a much simpler solutioretoritical section problem forn
processes:

e Shared data
semaphor e mut ex=1;
e Process’,

while (1) {
wai t (mut ex) ;

[+ critical section */
si gnal (mut ex) ;

/* non-critical section =/

The semaphore provides the mutual exclusion for sure, analésatify progress, but depending
on the implementation of semaphores, may or may not prowsdeded waiting.

A semaphore implementation might look like this:

struct senaphore {
i nt val ue;
proclist L;

3
e block operation suspends the calling process, removes it frosideration by the scheduler

o wakeup(P) resumes execution of suspended prodessuts it back into consideration

e wait(S):

S. val ue--;

if (S.value < 0) {
add this process to S.L;
bl ock;

}

14

CS 322 Operating Systems Spring 2008

e signal(S):

S. val ue++;

if (S.value <= 0) {
renove a process P fromS. L;
wakeup(P);

}

There is a fairly standard implementation of semaphoresamynix systems: POSIX semaphores

create a shared variable of typemt

initialize it with semi ni t (3)

wait operation isemwai t (3)

signal operation isempost (3)

deallocate wittsemdest r oy (3)

Examples using POSIX semaphores and a semaphore-likerwonsalled amutex provided by
pthreads to provide mutual exclusion in the bounded buffeblem:

See Example:
/ cl ust er / exanpl es/ prodcons- pt hr eads- count er - sem

The pthreads librarynutex is essentially a binary semaphore (only 0 and 1 are allow&be
pt hread_mutex_.init(3).

Note that what we have been looking at emanting semaphores. This means that is the semaphore’s
value is 0 and there are tvgd gnal operations, its value will be 2. This means that the next two
wai t operations will not block.

This means that semaphores can be used in more generabsisuidtan simple mutual exclusion.
Perhaps we have a section that we want at most 3 processdab@saime time. We can start with
a semaphore initialized to 3.

Semaphores can also be used as a more general-purposeosyration tool. Suppose statement
B in processP; can be executed only after statemenin F;. We use a semaphore calletiag,
initialized to O:

P P
A; wait (fl ag);

signal (flag); B;

15

CS 322 Operating Systems Spring 2008

Here, P; will be forced to wait only if it arrives at thevai t call before P, has executed the
si gnal .

Of course, we can introduageadlocks (two or more processes waiting indefinitely for an event
that can only be caused by one of the waiting processes).

Consider semaphorég and R, initialized to 1, and two processes that need to wait on.béth
careless programmer could write:

By P
wai t (Q; wai t (R);
wWait(R: wait(OQ:

Si gnall.II(R) . Si gna;i.(Q);
signal (Q; signal(R);

Things might be fine, but they might not be.

There’s also the possibility that a process might just foagea gnal and leave one or more other
processes (maybe even itself) waiting indefinitely.

We will look into the implementation of semaphores and mesaater, but for now we will look
more at how to use them as a synchronization tool.

Classical Problems of Synchronization

We will use semaphores to consider some synchronizatidolgres. While some actual imple-
mentations provide the ability to “try to wait”, or to examithe value of a semaphore’s counter,
we restict ourselves to initializatiomai t , andsi gnal .

Bounded buffer using semaphores

First, we revisit our friend the bounded buffer.

e Shared data:

semaphore fullslots, enptyslots, nutex;
full =0; enpty=n; mnutex=1;

e Producer process:

while (1) {
produce item
wai t (enptyslots);

16

CS 322 Operating Systems Spring 2008

wai t (mut ex) ;

add itemto buffer;
si gnal (mut ex) ;

signal (fullslots);

e Consumer process:

while (1) {
wait (fullslots);
wai t (mut ex) ;
remove itemfrombuffer;
si gnal (nut ex) ;
signal (enptyslots);
consune item

nmut ex provides mutual exclusion for the modification of the buffeot shown in detail). The
others make sure that the consumer doesn’t try to remove &aoempty bufferf(ul | sl ot s is
> 0) or that the producer doesn't try to add to a full buffenpt ysl ot s is > 0).

Dining Philsophers

e One way to tell a computer scientist from other people is toamut the dining philoso-
phers.

e Five philosophers alternate thinking and eating
e Need 2 forks to do so (eating spaghetti), one from each side

e keep both forks until done eating, then replace both

Sincef or k is the name of a C function, we’ll use a different (and pogsibbre appropriate)
analogy of chopsticks. The philosophers needs two chdysstiiceat rice.

e Shared data:

semaphor e chopsti ck[5];
chopsti ck[0. . 4] =1;

e Philosophet:

17

CS 322 Operating Systems Spring 2008

while (1) {
wai t (chopstick[i]);
wai t (chopsti ck[(i +1) %]) ;

[+ eat =/

signal (chopstick[i]);
si gnal (chopsti ck[(i +1) %]) ;

[+ think */

This solution may deadlock.

One way to reduce the chances of deadlock might be to thirk $irsce each might think for a
different amount of time.

Another possibility:
Each philosopher

1. Picks up their left chopstick
2. Checks to see if the right chopstick is in use
3. If so, the philosopher puts down their left chopstick, ataits over at 1.

4. Otherwise, the philosopher eats.

Does this work?

No! It livelocks. Consider this: all could pick up their lefhopstick, look right, put down the left,
and repeat indefinitely.

How to solve this? Must either

1. introduce an asymmetry, or

2. limit the number of concurrently hungry philosophersite 1.

Here’s one that includes an asymmetry, by having odd nurdi@rdosophers pick up to the right
first. The code for philosophérand problem size.

voi d phil osopher() {
t hi nk;
if (odd(i)) {

18

CS 322 Operating Systems

}

wai t (chopstick[(i+1) %n]);
wai t (chopstick[i]);
}
el se {
wai t (chopstick[i]);
wai t (chopstick[(i+1) %n]);
}
eat ;
if (odd(i)) {
signal (chopstick[(i+1) %n]);
signal (chopstick[i]);
}
el se {
signal (chopstick[i]);
signal (chopstick[(i+1) %n]);
}

Spring 2008

Readers-Writers

We have a database and a number of processes that need adtedgetwould like to maximize
concurrency.

e There are multiple “reader processes” and multiple “witecesses”.

e Readers see what’s there, but don’'t change anything. Likesopeon a travel web site

seeing what flights have seats available.

e Writers change the database. The act of making the actualaties.

e It's bad to have a writer in with any other writers or readenmnay sell the same seat to a

number of people (airline, sporting event, etc). Remensloemt er ++ andcount er - - !

e Multiple readers are safe, and in fact we want to allow as nwaciturrent access to readers
as we can. Don't want to keep potential customers waiting.

A possible solution:

e Shared data:
semaphore wt, nutex;
i nt readcount;
wt=1; nutex=1; readcount=0;

e Writer process:

19

CS 322 Operating Systems
while (1) {
wait(wt);
|+ performwiting */
signal (wt);
}

e Reader process:

while (1) {

}

wai t (mut ex) ;

readcount ++;

if (readcount == 1) wait(wt);
si gnal (nut ex) ;

/* performreading */

wai t (mut ex) ;

readcount - -;

if (readcount == 0) signal (wt);
si gnal (nut ex) ;

Spring 2008

Note that the semaphonmait ex protectsr eadcount and is shared among readers only.

Semaphorevr t is indicates whether it is safe for a writer, or the first reatteenter.

Danger: areader mayai t (wrt) while inside mutual exclusion afut ex. Is this OK?

This is a reader-preference solution. Writers can starvéd ifight not be good if the readers are
“browsing customers” but the writers are “paying custoriiers

Sleeping Bar ber

Problem: A certain barber shop has a single barber, a barti®air, and: chairs in a waiting area.

The barber spends his life in the shop. If there are no cus®mehe shop, the barber sleeps in
the chair until a customer enters and wakes him. When custoarnerin the shop, the barber is
giving one a haircut, and will call for the next customer whenfinishes with each. Customers
arrive periodically. If the shop is empty and the barber lsgsin the barber’s chair, he wakes the
barber and gets a haircut. If the barber is busy, but thereraies available in the waiting room,
he sleeps in one of those chairs until called. Finally, itéh&re no available chairs in the waiting
room, the customer leaves and comes back another time.

A possible solution:

e Shared Data

20

CS 322 Operating Systems Spring 2008

constant CHAI RS = nmaxi num nunber of chairs (including barber chair)
semaphor e nut ex=1, next cust =0, bar ber r eady=0;
i nt cust_count =0;

e Customer process

while (1) {

/* live your non barber-shop life until you deci de you need
a haircut =/

wai t (mut ex) ;

i f (cust_count>=CHAIRS) {
si gnal (nut ex) ;
exit; /+ leave the shop if full, try tonorrow */

}

cust _count++; /* increnment custoner count =/

si gnal (nut ex) ;

signal (next _cust); [/* wake the barber if he s sleeping */

wai t (barber_ready); /* wait in the waiting room */

[+ get haircut here =*/
wai t (nut ex) ;
cust _count--; [/ |eave the shop, freeing a chair =*/

si gnal (nut ex) ;

}

e Barber process

while (1) {
wai t (next _cust); /* sleep until a custonmer shows up x/
signal (barber_ready); /x tell the next custoner you are ready =/

/* give the haircut here */

Semaphore | mplementations

POSI X semaphores
We have seen examples using POSIX semaphores and pthreaxksiut

POSIX semaphores are implemented using pthreads mutexes:

21

CS 322 Operating Systems Spring 2008

fusr/src/lib/libc.r/uthread/ uthreadsemc

Thest ruct semdefinitionisin/ usr/src/lib/1ibc_r/uthread/ pthread_private.
h

This is an implementation of full counting semaphores usignstruct that is much like a binary
semaphore.

Note that if we determine thatwai t () call must result in an actual wait (rather than just a
decrement of the semaphore value) we need to put the thresdekip and unlock the mutex.

We need something else to “sleep” on. All we have to work with athread functions here, not
the actual kernel data structures that a lower-level implaiation of semaphores might use.

pthreads provides a construct calledoadition variable, with which a thread can be put to sleep
with a call topt hr ead_cond wai t ().

This essentially provides a place for pthreads to sleepteagaomeone to “signal” them by calling
pt hr ead_cond_si gnal ().

Calling pt hr ead_cond wai t () also releases the mutex so some other thread can have the
chance to come in and des@mpost () to let us continue at some point in the future.

The thread automatically reacquires the mutex lock whenatwakened.

We can see the callspi hr ead_cond wai t () insemwai t () andpt hr ead_cond_si gnal ()
insempost ().

This implementation also providessemt r ywai t () and asemget val ue() which make
these even more flexible than the semaphores we have beeniagdor our synchronization
problems.

Note: in FreeBSD, these are implemented as an extention tpttineads library, and cannot be
used for synchronization of independent processes. (sethmentirsemi ni t ())

Pthreads mutex/condition variables
But what about these pthread mutexes and condition varfalblesv are these achieved?

See¢lusr/src/lib/libc.r/uthread/ pthreadprivate.h,/usr/src/lib/libc_
r/ ut hread/ ut hr ead_nut ex. cand/ usr/src/lib/libc_r/uthread/ uthread.cond.
C.

First, note the structure definitions ®t r uct pt hr ead_nut ex andst ruct pt hr ead_cond.
Thept hr ead_nut ex_i ni t () function initializes the structure. Not much of interestéhe
Thept hr ead_nmut ex | ock() just calls another internal routineut ex | ock_common() .

Once we check errors and defer signals, we call

_SPI NLOCK(&(* mut ex) - > ock) ;

22

CS 322 Operating Systems Spring 2008

As the name suggests, this is a spin lock. But aren’t we supiosiee avoiding these? Let’s see
what this is all about. It is a macro. It actually ends up aaglla function.spi nl ock defined in
fusr/src/lib/libc._r/uthread/uthread.spinlock.c

While we cannot obtain the lock with an atomic test and setaipmr, we yield the CPU and try
again. Note that the atomic test operation, definedusar/ src/ i b/1ibc_r/arch/i 386/
_,atom c ock. S, uses thexchg instruction on the x86. This instruction is an atomic swap
of the value in a register with the values in a memory locatibiote that each architecture has
something implemented in assembly that will provide edeivafunctionality.

OK, so back in themut ex_| ock_comon() function, we have exclusive access to the mutex
data structure. We can now see if it's locked (if it has a ndsi-N owner). If not, we take it. If so,
we add ourself to the list of waiters. Thehr ead_ker n_sched_st at e_unl ock() function
then unlocks the mutex, and we change our staRStOMITEX WAI T, so we will not be scheduled
until the mutex is unlocked.

When it comes time to unlock, we end up in thmat ex_unl ock_common() function. We
basically get the lock on the mutex (spinlock). If there dreads waiting on the lock, we pick the
next one, set its state #5_RUNNI NG and do some other bookkeeping so it can run. If no thread
was waiting, the assignment inside the if statement setevimer toNULL, unlocking the mutex
for the next lock attempt.

So what about the condition variable?
This is implemented ihusr/ src/ i b/libc_r/uthread/ uthread_cond.c.
Initialization is straightforward - not much of interestree

pt hr ead_cond_wai t () is where the interesting functionality lives. Once we sex the call
is valid, the current thread is added to the condition véeialwaiting queue, and given a “never
wake up” status, set its stateRS_COND_WAI T.

pt hr ead_cond_si gnal () selects a thread that is waiting on the condition variabte\aakes
it up by setting its state tBS_RUNNI NG

SysV Semaphores

FreeBSD also implements System V semaphores.

SysV (along with BSD) was one of the two major “flavors” of Unix.

Most Unix systems were either BSD-based (SunOS up to 4.xixWtr SysV-based (Irix, Solaris).

Despite being (as you may have guessed) BSD-based, FreeB&® arla semaphore implemen-
tation from a long, long time ago from SysV.

These are described in great detail in Bach.
They are allocated in groups, stored in arrays.

See Example:
/ cl ust er / exanpl es/ prodcons- sysvsenaphor e

23

CS 322 Operating Systems Spring 2008

This example demonstrates the use of these semaphorescto@yize independent processes.

The buffer process creates and initializes the semaphanelssome shared memory). Semaphores
created witrsenget () , we set their initial values by callingenct | () with the SETVAL com-
mand.

Producer and consumer processes attach to the existingdsm&mory and semaphores, then use
the semaphores as we have seen in producer/consumer ezamgkess. Usingenop() call.

We won't look at the implementation of these in as much dese did for the POSIX semaphores,
but here are some highlights.

Implementation for FreeBSD is ihusr / src/ sys/ kern/ sysv_sem c
Seesenmop() callingnsl eep() (Line 1052).
nel eep() is a kernel call that puts a process to sleep until someoievakeup() .

These are defined ihusr / src/ sys/ ker n/ ker n_synch. ¢ and this is where PCBs are actu-
ally put into sleep queues and removed from ready/run queues

Windows XP Semaphores

Windows XP provides both binary semaphores (mutexes) andticy semaphores.

Monitors

Semaphores are error-prone (oops, did Iwsayt ? | meantsi gnal !). You might never release
a mutex, might run into unexpected orderings that lead tdide&.

Monitors are a high-level language constuct intended tades@me of these problems. A monitor
is an abstract data type with shared variables and methiotifgrsto a C++ or Java class.

nmoni t or exanpl e_non {
shared vari abl es;

procedure P1(...) {

}

procedure P2(...) {

}

initialization/constructor;

}

24

CS 322 Operating Systems Spring 2008

A monitor has a special property that at most one processeastively executing in its methods
at any time. Mutual exclusion everywhere inside the mohitor

But if only one process can be in, and a process needs to wadth&w processes can get in.
So an additional feature of monitors is tbendition variable. This is a shared variable that has
semaphore-like operationgi t () andsi gnal (). When a process in a monitor has to wait on
a condition variable, other processes are allowed in.

But when happens on a signal? If we just wake up the waitingga®and let the signalling process
continue, we have violated our monitor’s rules and have tetiva processes in the monitor. Two
possibilities:

e Force the signaler to leave immediately

e Force the signaler to wait until the awakened waiter leaves

There are waiting queues associated with each conditioablar and with the entire monitor for
processes outside waiting for initial entry.

entry queus

shared data

hHueues associated with{
X, yconditions

operations

initialization
code

Note that monitors are a language construct. They can beemwgited using OS-provided func-
tionality such as semaphores.

Also note the similarity between these monitors and Jassekkand methods that useslymchr oni zed
keyword.

25

