Computer Science 322
M[] (C Operating Systems
_— Mount Holyoke College
MOUNT HOLYOKE COLLEGE Sprlng 2008

Topic Notes: Memory Management

Memory is one of the major shared resources in any moderersysh program needs access to
the CPU, and space in memory for its instructions and dataderdo run.

Think of a simple program that does some operations like this

/[l stuff
while (i!=0);

This becomes assembly code that looks something like this:

LOAD X, RO
I NC RO
STOR RO, X
and
| oopstart:
I assuming i isin Rl
TEST R1

BNE | oopst art

Somewhere in memory, there is program text corresponditiietee statements and variables.

How does the program know how to find the memory location eapwading to variable? How
does theBNE instruction know where to jump to?

Binding to Memory

When does an instruction or a variable get assigned an actrabny address? There are three
possible times:

CS 322 Operating Systems Spring 2008

1. Programming or Compile timéf we can know the actual memory locatiampriori, absolute
code can be generated. The downside is that we must rewrgea@mpile code if its starting
location changes.

This might be used on small systems.

e Microprocessors might do this.
e The old DOS. comformat programs used this.
e Programs for things like the Commodore 64 used this.

For example, a BASIC program on the Commodore 64 could indluelstatements

10 POKE 1320, 1
20 PCKE 55592, 6

This puts character 'A' near the middle of the top of the sordben changes its color to
blue. (See Appendix D)

We could also see the current status of joystick 1:
10 JV=PEEK(56320)

Bits correspond to the 4 directions and the fire button status.
A program could also decide #OKE andPEEK values anywhere into memory.
This will not work on a multiprogrammed system, unless eadg@mm is compiled to have
disjoint memory usage, but the idea lives on in the smalleicés today.
2. Load time Must generate relocatable code if memory location is notnat compile time.

Medium/larger systems may do this. The physical addresa f@riable or an instruction
(branch target) is computed when the program is loaded ietmony.

Once the program has been loaded into a section of memoayitot move. If it is removed
from memory, it must be returned to the original location.

Multiprogramming is possible, and we will consider the ssihis brings up for memory
management.

3. Execution timeBinding must be delayed until run time if the process can beedaluring
its execution from one memory segment to another. Need laedsupport for address maps
(e.g.,base and limit registejs

This is also used for modern medium and large systems. A gnogrdata and instructions
can be moved around in memory at run time.

This allowsdynamic loadingand/ordynamic linking Here, a segment of program code is
not brought into memory until it is needed.

CS 322 Operating Systems Spring 2008

Logical vs. Physical Address Space

A logical addresss one generated by the CPU (your program); and is also refféorasvirtual
address

A physical addresg the one seen by the memory unit.

These are the same in compile-time and load-time addresagischemes; they differ in execution-
time address-binding scheme.

TheMemory-Management Unit (MMUS$ a hardware device that maps virtual to physical address.
In a simple MMU scheme, the value in thedocation registeris added to every address generated
by a user process at the time it is sent to memory.

The user program deals with logical addresses; it neverteeagal physical addresses.

Memory Protection

If multiple processes are going to be in memory, we need toensake that processes cannot
interfere with each others’ memory. Each memory managesai@me we consider must provide
for some form of memory protection.

Swapping

In a multiprogrammed system, there may not be enough merdrgve all processes that are in
the system in memory at once. If this is the case, programs beusrought into memory when
they are selected to run on the CPU. This is wheeglium-term schedulingpmes in.

Swappings when a process is moved from main memory toldheking storethen brought back
into memory later for continued execution.

The backing store is usually a disk, which does have spaaddmtemory images for all processes.

Swapping time is dominated by transfer time of this backiages which is directly proportional
to the amount of memory swapped.

Ty
v
0S
swap out P1
Proc 1— L | Proc 3
//
Proc 2 |SWap in P3 \w
memory backing store

CS 322 Operating Systems Spring 2008

The short-term scheduler can only choose among the pracagssgemory, and to keep the CPU
as busy as possible, we would like a number of processes inomyerAssuming than an entire
process must be in memory (not a valid assumption when we @aivmemory), how can we

allocate the available memory among the processes?

Contiguous Allocation

If all processes are the same size (not likely!), we coul@éivip the available memory into chunks
of that size, and swap processes in and out of these chuniesality, they are different sizes.

For the moment, we will assume that each process may havéesedif size, but that its size is

fixed throughout its lifetime. Processes are allocated ki contiguous memory of various
sizes.

When a process arrives (or is swapped in) it is allocated atabl@chunk (a “hole”) large enough
to hold it. The system needs to remember what memory is addand what memory is free.

0 0 0 0
0s 0s 0s os
20 20 20 20
P7 P7 P7 FREE
40 40 40 40
P6 P6
P3 FREE
FREE FREE
160 160 160 160
P1 P1 P1 P1
200 200 200 200

What hardware support is needed to support this relocation?

limit relocation
register register

logical
address

physical
address

CPU memory

trap; addressing error

CPU'’s logical address is first checked for legality (limitistgr) to ensure that it will be mapped
into this process’ physical address space, then it is adulad bffset (relocation or base register)

CS 322 Operating Systems Spring 2008

to get the physical address. If the program is reloaded idlifferent portion of memory later, the
same logical addresses remain valid, but the base regigtehange.

How do we decide which “hole” to use when a process is addedP¥yehave several available
holes to choose from, and it may be advantageous to choosgvenanother.

e First-fit: choose the first hole we find that is large enough. This is fagtimizing the
search.

e Best-fit Allocate the smallest available hole that is large enooghdrk. A search is needed.
The search may be shortened by maintaining the list of hotkered by size.

e Worst-fit Allocate the largest hole. This is counterintuitive, buayrbe reasonable. It
produces the largest leftover hole. However, in practiperforms worse.

Fragmentation

The problem with any of these is that once a number of prosds®eée come and gone, we may
have shredded up our memory into a bunch of small holes, dadhich alone may be too small to
be of much use, but could be significant when consideredhegethis is known aBagmentation

e External fragmentationtotal memory space exists to satisfy a request, but it isontiugu-
ous. For example: 3 holes of size 20 are available, but a psamannot be allocated because
it requires 30.

¢ Internal fragmentation this occurs when the size of all memory requests are rounged
to the next multiple of some convenient size, say 4K. So ifaess needs 7K, it needs to
round up to 8K, and the 1K extra is wasted space. The cost magptibwhile, as this could
decrease external fragmentation.

External fragmentation can be reduceddmmpaction— shuffling of allocated memory around
to turn the small holes into one big chunk of available memcofis can be done, assuming
relocatable code, but it is expensive!

Contiguous allocation will not be sufficient for most real teyss.

More Advanced Approaches

Contiguous allocation is unlikely to work in most environrteenMost common approaches used
today are eithepaging segmentationor a combination of these.

In each case, we break down the logical address space focagsrmto smaller chunks. Itis these
chunks that we assign to parts of physical memory rathertti@mwhole process.

With paging, we break up memory into fixed-size chunks. Watnsentation, we break up mem-
ory into pieces whose size corresponds to some logical mediasion of the program, such as a
block of global variables, the program text for a particdtarction, etc.

5

CS 322 Operating Systems Spring 2008

Paging

We can do better if we allow a process’ logical memory to becootiguous in physical memory.
An approach that breaks up memory into fixed-size chunkdlisccpaging

The size of the chunks is called thage sizetypically a power of 2 around 4K. We break up both
our logical memory and physical memory into chunks of thee sirhe logical memory chunks are
calledpagesand the physical memory chunks are callieanes

The system keeps track of the free frames of physical merandyvhen a program of sizepages
is to be loadedy free frames must be located.

We can create airtual memorywhich is larger than our physical memory by extending tha ioe
process swapping to allow swapping of individual pagess Blows only part of a process to be
in memory at a time, and in fact allows programs to accessiedbgemory that is larger than the
entire physical memory of the system.

physical logical
memory memory
(frames) (pages)

Fragmentation: we have no external fragmentation, but weedte internal fragmentation.

The contiguous allocation scheme required only a pair ofters, the base/relocation register
and the limit register to translate logial addresses to iphi/sddresses and to provide access
restrictions. For paging, we need something more complitah page tablas needed to translate
logical to physical addresses.

CS 322 Operating Systems Spring 2008

frame
number
page 0 i]
0
page 1 1 n 1| page0
page 2 2 2
3
page 3 page table 3| page2
logical 4| page
memory
5
]
7| page3
physical
memaory

A page table is maintained for each process, and is maimtamenain memory (in its most
straightforward implementation).

A page table base register can be used to locate the pagataidenory, page-table length register
to determine its size.

It is possible that not all of a process’ pages are in memaitywe will not consider that just yet.

Logical addresses are broken into:

e A page numberp, which is the index into the page table

e A page offsetd, which is added to the base address of the physical memaneftiaat holds
logical pagep

logical physical
address address 0000 ... 0000

v bFTe] [GT6
|

711 o111

physical
MEmory

page table

CS 322 Operating Systems Spring 2008

If a page moves to a different frame, we don’t have to tell ttegpam — just update the page table
and the same logical addresses will work.

Disadvantage: every data/instruction access now requit@semory accesses: one for the page
table and one for the data/instruction. This is unacceptaldemory access is slow compared to
operations on registers!

The two memory access problem can be solved with hardwagostpossibly by using a fast-
lookup hardware cache called associative memory or triimsleok-aside buffers (TLBS)

legical
address

cPU P [a

page frame
number number

TLB hit

physical
address

LB

TLB miss
i

o

== physical
Mmemory

page table

The TLB is an associative memory — a piece of hardware thatuetsearch all entries for a line
whose page number js If it's there, we get our frame numbgrout without a memory access to
do a page table lookup. Since this is relatively expensivevware, it will not be large enough to
hold all page table entries, only those we've accessed irettent past. If we try to access a page
that is not in the TLB, we go to the page table and look up the éraomber. At this point, the
page is moved into the TLB so if we look it up again in the neaure, we can avoid the memory
access.

Fortunately, even if the TLB is significantly smaller thae tiage table, we are likely to get a good
number of TLB “hits”. This is because tdcality — the fact that programs tend to reuse the same
pages of logical memory repeatedly before moving on to sotheraroup of pages. This idea
will come up a lot for the rest of the semester. But here, it mdhat if the TLB is large enough

to hoId% of the page table entries, we will get much, much more théﬂnihrate on the TLB.

TLB hit is still more expensive than a direct memory acces@ging at all) but much better than
the two references from before.

A TLB is typically around 64 entries. Tiny, but good enouglgtd a good hit rate.

TLB management could be entirely in the MMU, but often (on RISGtems like Sparc, MIPS,
Alpha) the management is done in software. A TLB miss is teapjo the OS to choose a TLB
victim and get the new page table entry into the TLB.

8

CS 322 Operating Systems Spring 2008

On the Intel Pentium 4 1.4 GHz: 128 entries in intstructiorBT B4 entries in data TLB. ITLB re-
placement takes 31 cycles, DTLB takes 48 cycles. TLBs ang&sibociative and use LRU replace-
ment. ot tp: / /1 30www. i r a. uka. de/ resear ch/ docunent s/ | 4ka/ smal | spaces.

pdf)

Multilevel Page Tables

We said earlier that the page table must be kept in main memdith a large page table, this
could end up taking a significant chunk of memory.

For a 32-bit address spac®q{ bytes) and a frame size of 4KRB'¢). This leaves about 1 million
page table entrie21{). So we use up 4 MB of memory just to hold the page table.

A solution to this is to page the page table! For a two-leveipgscheme, we break up our logical
address into three chunks: an index into the outer page pab&edisplacement in the outer page
tablep, to find the actual frame, and a page offget

10 10 12

P1P2| d

find actual value in memory at displacement d

PTBR —

find inner page table frame at offset P1

find actual frame number at offset P2

This means our address translation is now more complex:

CS 322 Operating Systems Spring 2008

logical address

Py

v

o

Pa

outer-page
table

— g

d

page of
page table

Note that we now have 3 memory accesses to do one real menmegshdVe’ll need hardware
support here, too.

This can be expanded to 3 or 4 levels.

This approach has been taken with some real systems: VAX/MBES 2 levels, Sparc uses 3
levels, and the 68030 uses 4 levels.

Think of this like a phone book (with numbers as keys to nam&syu don’t want a big phone
book with all phone numbers. You have one book which listeedh codes and tells you where
to find another book with that area code. Then you find that laakh lists exchanges and tells
you where to find the phone book for that exchange. Finally, Ipok in that book for the actual
numbers and find the names.

We'll really need some TLB hits to be able to take advantagthsf and still have reasonable
performance.

If a 64-bit system wanted to use this scheme, it would takeiabdevels to get page tables down
to a reasonable size. Not good enough...

Inverted Page Table

Here, we have one entry for each real page of memory, and testphle lists the pid and logical
page.

An entry consists of the virtual address of the page storetthah real memory location, with
information about the process that owns that page.

This decreases memory needed to store each page tablecim#ses time needed to search the
table when a page reference occurs.

A hash table can limit the search to one or at most a few pdge-¢atries.

The extra memory accesses required for hash-table seanehaleviated by a TLB.

10

CS 322 Operating Systems Spring 2008

logical
address

I ¥ :
CPU —-Ipit/p [0] [T 2adess , B physical

memory
search l } '

page table

physical

Note that there is one page table shared among all procedse®ID must be part of the logical
address.

Memory Protection with Paging
Memory protection with a paging scheme is not as simple ase/lmait pair of registers.

We need to know which process owns each physical memory franteensure that page table
lookups for a given process can produce only physical addsathat contain that process’ data.

Not all parts of the process’ logical address space will @ttihave a physical frame assigned to
them. So page table entries can be given an extra “valididivait:

11

CS 322

Operating Systems

00000

page 0

page 1

page 2

page 3

page 4

10468 ooee

12,287

frame number ; valid-invalid bit

-

=T E=T =T -1 IV - SR RSN

ol B o | |2 fuz | |2

= o B LWL RN 2O

page tabie

page 0

page 1

page 2

page 3

page 4

page 5

page n

Spring 2008

Shared Pages

Processes may be able to share code frames, and processessimayshare memory.

e Shared code- Only one copy of read-only (reentrant) code shared amoogegses (i.e.,

text editors, compilers, window systems). Such shared nug# appear in same location in

the logical address space of all processes.

e Private code and data Each process keeps a separate copy of the code and dataadgdse p

for the private code and data can appear anywhere in thealagfiiciress space.

Complications:

o If a page moves, all processes sharing that page must be afnare

e Aframe is not available for reuse until all processes thatusing it no longer want it.

12

CS 322 Operating Systems Spring 2008

ed 1 0
ad 2 1| datai
ad 3 2| daad
data 1 page table S| mscis
for P, ad 1
process P 4 ed P
ed 2
8
ed 3
B ed3
data 2 page tabla
for P T data 2
2
El process P,
B
ed2
9
ad 3
10
data 3 page table
for Py
process #,

Demand Paging

Recall that virtual memory allows the use of a backing stordi¢&) to hold pages of process’
logical address space that are not currently in use.

Regs Small, fast, expensive

Cache

/ Main Memory \
/Disk/VirtuaI Memory\

/Tape, Remote Access, etc.\ Large, slow, cheap

Earlier we talked about moving entire processes betweamimemory and main memory. How-
ever, when combined with a paging scheme, we can swap ingivzhges. This is desirable since
relatively small parts of a program text and variables ates@@t any given time (or possibly,
ever).

e Bring pages into memory only when needed

— Less I/0O needed (disk access to read pages)

13

CS 322 Operating Systems Spring 2008

— Less memory needed (physical)
— Faster response (less I/O, copying to activate a process)
— More users (more frames to go around)

e We know that a page is needed when there is a reference to it

This can be implemented with the valid-invalid bits of a p&ajge that we saw earlier.

o M 2
v lid - imvalid
) B Iram. bi
" ¥ 4 A
28 o|a v
= o 1 i 5
2|8 [v 8l ©
4 E 3 |
T 7
5 F % i
519 |v =1
s @ - | N
7 i g I 10
lagical page table
MMy n

physical memary

In the figure, logical pages A-F have been allocated by thega®y while G and H are part of the
logical address space but have not yet been allocated. A,d0F,dmave valid page table entries,
while the others do not.

If a page lookup hits a page table entry marked as invalid, @ero bring that page in. This is
called apage fault

A page fault causes a trap to the OS.

e invalid reference— abort

¢ valid, but not-in-memory— bring to memory
If the reference is valid, the system must

e get an empty frame

14

CS 322 Operating Systems Spring 2008

e swap the page from virtual memory into the frame
e update the page table, set the status to valid

e restart the process

P l';l page is on
| | . backing slore

—_— W

{ B I

oparatng
system

refarence tr;..p

1 =
ad M f4————— [
) P
restart pane tabla
Instruction !
free frame -+ - E

(5] 4)
resel page belng
table missing page

physical
MEMary

But what happens if there is no free frame? We need to make one!

Page Replacement
To do this, we need to take one of the frames and swap it outd-isback to the disk.

Ideally, we would like to select a frame to remove (a “victinfiat is no longer in active use by
any process. We will examine some algorithms that attemgo tist this. If the victim is needed
again, a page fault will be generated when it is referencedtamill be brought back in.

The percentage of memory accesses that generate a page talled thepage fault rate 0.0 <
p < 1.0 Arate of 0 means there are no page faults, 1 means everyme&generates a page fault.

Given a page fault ratg, memory access cost,,, and a page fault overheag, we can compute
aneffective access time

EAT = (1 —p) X tya +D X tpf
tpr includes all costs of page faults, which are time to trap eodystem, time to select a victim,
time to swap out the page, time to swap in the referenced pagejme to restart the process.

The page being swapped out needs to be written back to digkfdhhas been modified. If the
page has not been modified since we brought it into main memgymay be able to skip this
step. This, however, depends on the implementation.

15

CS 322 Operating Systems Spring 2008

For example, suppose a memory access takes irap to the system and selection of a victim
takes 5Qus, swapping in or out a page takes 43 (= 10000us), and restarting the process takes
50 us. Also, suppose that the page being replaced has been mdaifiéf the time, so half of
the page faults require both a page write and a page read.

t,r = 50 + 5000 + 10000 4 50 = 15100
EAT = (1 = p) X tyma +p X tpy = (1 —p) x 1+ p x 15100 = 1 + 15099p

If p = .5, this is pretty horrendous. Our demand paging system hag th@daverage memory
access 7500 times slower! So in realjgynust be very small. Fortunately, our frietatality of
referencehelps us out here again. Real programs will have a low pagertal giving reasonable
effective access times.

Appropriate selection of the victim can make a big differehere. It may be worthwhile to take
more time to select a victim more carefully if it will lower and in turn,EAT.

To reduce the page fault rate, we should select victims thiahat be used for the longest time
into the future.

Page Replacement Algorithms
We were discussing memory management in paged systems.

Much like what we did to compare CPU scheduling algorithmsywlieevaluate page replacement
algorithms by running them on a particular string of memaferences (reference string) and
computing the number of page faults on that string. The gtimdlicates the logical pages that
contain successive memory accesses. We count the numbageffaults needed to process the
string using the given algorithm.

In all our examples, the reference stringis 1, 2,3,4,1, 2,13, 3,4, 5.

We know that there must be a minimum of 5 page faults here, @$beht pages are referenced.
If we have 5 frames available, that is all we’ll ever have. Soomnsider cases where we have 3 or
4 frames available, just to make it (slightly) interesting.

First-In-First-Out (FIFO) Algorithm
You guessed it — the first page in is the first page out when itesaime to kick someone out.

If we have 3 frames available:

11 4| 45
2.2 |13
31.3|.24

16

CS 322 Operating Systems Spring 2008

This produces a total of 9 page faults. Let’s add a frame.

4 frames:
1| 4| 54
2 |2 | ¥5
31.8| 2
4 | 4| 3

We got 10 page faults! This is very counterintuituve. We wioekpect that adding available
memory would make page faults occur less frequently, noemdsually, that is the case, but we
have here an example Belady’s AnomalyHere, adding an extra frame caused more page faults.

FIFO replacement is nice and simple —we know our victim imiaedly. However, it may produce
a large number of page faults given an unfortunate refersinicey.

Optimal Algorithm (OPT)

We can't do better than replacing the page that will not beldselongest period of time in the
future, so let’s consider that.

4 frames example:

14| 4
2 | 2
3|3
4 | 4| 5

6 page faults.
Problem: we can’t predict the future, at least not very aaigly.

So it’'s not practical, but it is useful to see the best we caagla baseline for comparison of other
algorithms.

Least Recently Used (LRU) Algorithm

Select the frame that we have not used for the longest tinfesipast.

17

CS 322 Operating Systems Spring 2008

1| 4|5
2| 2

3| 3|54
4 | 4| 3

8 page faults. So we did better than FIFO here, but it's natrogit
This one can actually be used in practice.

It can be implemented directly by maintaining a timestangt gets updated each time a frame is
accessed. Then when a replacement decision is needed ghatbrthe the oldest time stamp is
selected.

This is expensive in terms of having to update these timgstaom every reference, and involves a
linear search when a victim is being selected.

A stack-like implementation can eliminate the search. Whpage is references, it moves to the
top of the stack. A doubly-linked list can be used to make plissible:

MRU

t
ref 4
vi v

LRU

This requires 6 pointer updates each time a page is refaet¢hatwas not the most recently used.
This is still expensive, and would require hardware supfmbie used in practice.

LRU Approximation Algorithms

LRU is a desirable algorithm to use, but it is expensive tolangent directly. It is often approxi-
mated.

If we have one reference bit available, we can deeond-chancer clockreplacement algorithm.

Here, we treat our collection of frames as a circular listclEhas a reference bit, initially set to
0. Itis set to 1 any time the page is referenced. There is giemraer into this list (the hand of a
clock, hence the name) that points to the next candidatesffama page replacement.

When a page replacement is needed, the frame pointed to iglecets as a candidate. |If its
reference bit is 0, it is selected. If its bit is 1, the bit i$ 820, and the pointer is incremented to

18

CS 322 Operating Systems Spring 2008

examine the next frame. This continues until a frame is fowitd a reference bit of 0. This may
require that all frames be examined, bringing us arounddotte we started with. In practice, this
is unlikely.

It is called a second chance algorithm, as after a frame hag&haeference bit set to 0, it has a
second chance — if it is referenced before the pointer magkegy back around again, it will not
be removed. Thus, frequently-used pages are unlikely torhewictims.

Second-chance/clock does not do well with our running examp

10 page faults! We ran into the same unfortunate victim sielechat we saw with FIFO with 4
frames. We need a larger example to see the benefit.

G Lo

Pages 8 and 6 get their second chance, and may be refererfoeel the clock makes its way
around again.

An enhancement to the clock algorithm calt@dld’s Clock Algorithnuses a second bit — a “dirty”
bit in addition to the reference bit. The dirty bit keeps katwhether the page had been modified.
Pages that had been modified are more expensive to swap autdriba that have not, so this one
gives modified pages a better chance to stick around. Thismsrtéhy goal, though it does add
some complexity.

Counting Algorithms

One more group of algorithms to consider are those that kaeg of the number of references
that have been made to each page.

19

CS 322 Operating Systems Spring 2008

e Least-frequently used (LFUjeplaces page with smallest count. We haven't used it much,
so maybe that means we never will.

e Most-frequently used (MFUpased on the argument that the page with the smallest count
was probably just brought in and has yet to be used.

It is not clear which approach is better. LFU would need to @algined with some sort of aging
to make sure a page that is used a lot early on, getting a bigt,ccan still leave eventually when
its usage stops.

Implementations of these suffer from the same problems ttietdirect LRU approaches do.
They're either too expensive because of needed hardwaporupr too expensive because of
the searching needed to determine the MFU or LFU page.

Allocation of Frames

So far, we have considered how to assign pages of a proceggsalonemory to a fixed set of
allocated frameddcal replacement We also need to decide how many frames to allocate to each
process. It is also possible to select the victim from a fraomeently allocated to another process
(global replacement

Each process needs a certain minimum number of pages.

e pages for instructions
e pages for local data

e pages for global data
Allocation may be fixed:

e equal allocation 4 processes share frames,% each
e proportional allocation — processes that have more logieahory get more frames

e priority allocation — high priority processes get more femn

Thrashing

Thrashing occurs when a process does not have “enough” $rafteeated to store the pages it
uses repeatedly, the page fault rate will be very high.

Since thrashing leads to low CPU utilization (all processesral/O wait frequently having page
faults serviced), the operating system’s medium or longeheduler may step in, detect this and
increase the degree of multiprogramming.

20

CS 322 Operating Systems Spring 2008

thrashing

CFUO uimzahon

degree of mulliprogramming

With another process in the system, there are fewer framge #round, and the problem most
likely just gets worse.

Paging works because of locality of reference — a processsaadusters of memory for a while
before moving on to the next cluster. For reasonable pedoo®, a process needs enough frames
to store its current locality.

Thrashing occurs when the combined localities of all prees&xceed the capacity of memory.

Working-Set Model

We want to determine the size of a process’ locality to deitegrhow many frames it should be
allocated. To do this, we compute the set of logical pageptbeess has referenced “recently”.
This is called thavorking setof the process.

We define “recently” as a given number of page referencesiptbcess’ history. This number is
called thenor ki ng set w ndowis usually denoted\.

The working set will vary over time.

The appropriate selection & allows us to approximate the working set si¥€SS;, of process
P,. If Aistoo small,)W'SS; will not encompass the entire locality. X is too large, pages will
remain in the locality too long. A& increaseslV S'S; grows to encompass the entire program.

The total demand for frames in the systenbis= XW S'S;.

Thrashing by at least one process is likely when- m, wherem is the number of frames. If the
system detects thd? > m, then it may be appropriate to suspend one or more processes.

For the reference stringis 1, 2, 3,4, 1, 2,5, 1, 2, 3, 4, 5, Witk 4, the working set grows to
{1,2,3,4 by time 4, but note that at time 8, it contai{is,2,5.

Tracking the working set exactly for a givénis expensive and requires hardware support to hold
the time stamps of the most recent access to each page. Segtttog details of how to do this.

Windows NT and Solaris both use variations on the workingrezdel.

Program Structure

21

CS 322 Operating Systems Spring 2008

We have stated that programs exhibit locality of refereewen if the programmer made no real
effort to encourage it. But program structure can affectqrarbnce of a paging scheme (as well
as the effectiveness of other levels of the memory hiergrchy

Consider a program that operates on a two-dimensional array:
int A[I][] = new int[1024][1024]

and the system has a page size of 4KB. This means L824 fit in one page, or one page for
each row of our matrix A.

Program 1:

for (j=0; j<1024; j++)
for (i=0; i<1024; i+4+)
Alillj] =0

Program 2:
for (i=0; j<1024; j++)
for (j=0; i1<1024; i++)
Alil[j] = 0;

Assume a fixed allocation of 10 frames for this process. Rmogt generates 1024 1024 page
faults, while Program 2 only generates 1024.

Segmentation

Another possible memory management scheme, sort of a hybeimhtiguous allocation and pag-
ing, is calledsegmentation

Memory is allocated for a process as a collectiorsefments These segments correspond to
logical units of memory in use by a process:

e main program

e procedure, function, method

e Object, local variables

¢ global variables

e common block (Fortran)

e stack

22

CS 322 Operating Systems Spring 2008

e heap space

This can be thought of as a finer grained approach to contgyathocation — smaller contiguous
chunks, corresponding to these logical units — are scdttareughout memory.

S1: main
S4.globals
S1: main
S3:call
stack _
S4:global S2:printf
function
S2:printf
function S3:call
stack
user space physical memonr

With segmentation, a logical address consists of an orded(segment-number, offset)

A segment table contains two entries for each segment:

e base- the starting physical address where the segment residesrrory

e limit — the length of the segment

r—1 _limit | base —
segment
table

CPU -l>| s | d [
¥ L
/ \ es

< L :@ L

no

y

trap; addressing error physical memory

23

CS 322 Operating Systems Spring 2008

Two registers locate the segment table in memory:

e Segment-table base register (STBR) points to the segmegistédatation in memory

e Segment-table length register (STLR) indicates number gimsats used by a program;
segment number s is legal iksSTLR.

Fd [R
i subroutine stack
1400

segment 3 -'.

2400
symbaol
sagment 0 lable

segment 0

Sart segmant 4 0 1000 | 1400
| 1| 400 | 8300 3200
main 2(400 | 4300
program 3| 1100 | 3200 :
J 4| 1000 | 4700 segment 3
b ¥ sagmant table
\segrnent 1 segment 2 A3 segment 2
- 4700
logical address space sagmaent 4
5700
G300
segment 1

G700
physical memaory

With segmentation, segments may be relocated by movingep@ent and updating the segment
table. The segment number, and hence the logical addressesn the same.

Segment sharing is straightforward, as long as each proseshe same segment number. This is
required because the code in a segment uses addressessegimeit-number, offset) format.

Allocation for the segments uses the same techniques agjeouns allocation (first-fit, best-fit),
but since the chunks are smaller, there is less likelihocgbafe of the problems arising, though
external fragmentation is there.

What's the Right Answer?

Both paging and segmentation are actually used. In fact, rmgstgms combine them. See the
text for how they are combined in the Intel Pentium archiiezt

See the handout that goes with Lab 7 for more on how BSD dodsisll t

How might we compare strategies?

e how much hardware support is needed or available

24

CS 322 Operating Systems Spring 2008

performance — more complexity = slower

fragmentation?

relocation — do we need dynamic binding?

swapping — does it have to go back to the same place? Swap tie thing?

sharing segments/pages

protection — need to ensure safe access

25

