
Computer Science 322
Operating Systems
Mount Holyoke College
Spring 2008

Topic Notes: Introduction and Overview

Welcome to CS 322!

What do you think of when you talk about an operating system? (“I installed a new operating
system”, “Windows is my least favorite operating system”, “That must be a bug in the operating
system”)

What do you expect to learn in a course about operating systems?

OS topics are always in the news – lots of current developments in the OS world. Things change
quickly. This course is partially reinvented each time around, though the concepts remain similar.

Where This Fits In
You learned high-level language programming in your introductory and data structures courses.

You learned about hardware and assembly language in 211. Howto get from circuits to CPUs and
memory.

Compilers and programming languages teach you about how high-level languages let you program
the hardware in a more convenient way.

Many of the things that fit between those (compiled) high-level language programs and the hard-
ware are topics for this course.

In 211 (and maybe 324 for some of you), you learned about things like interrupts, traps, exceptions,
caches, virtual memory. These will all be important here, and we’ll revisit those as we go along.

So what do you need to do to go from the basic hardware you studied in those courses to the
multi-user systems we are used to on modern computers?

A computer system is made up of a collection of resources, such as a processor, memory, disks, a
keyboard, printers, network interfaces.

The operating system attempts to regulate the use of these resources for efficiency, fairness when
multiple users or processes want to use them, and safety to make sure multiple users don’t interfere
with each other.

We will consider the operating system from the point of view of users and systems.

To a user, the OS provides a more convenient interface. This allows the user to log in, manipulate
files and run programs in a reasonably intuitive and convenient manner. Meanwhile, it provides
protection of the user’s data from unauthorized access, andensures that the user is allocated a fair
share of the computer’s resources.

CS 322 Operating Systems Spring 2008

The user would like to do things like running programs and reading and writing files and commu-
nicating over the network without worrying about the details of what goes on at the lower levels.
Abstraction!

To a system, the OS provides safe and efficient access to the actual hardware. The OS tries to share
resources when safe to do so and restrict access when necessary.

We can think of the OS as a big resource manager.

Examples of Problems
Many important ideas in Computer Science arise in the study ofOperating Systems:

• There are 3 users, each wishing to use the computer at the sametime. Each has a program
that needs to run for 5 minutes. Is it better for the system to run the first to completion, then
the second to completion, then the third? Should it switch among them once a minute? Once
a second? Once a millisecond? After every instruction?

• Suppose we have two programs, one that generates output values that are used as inputs to
the other. How can we manage the situation where values may begenerated by the first more
quickly than they can be processed by the second? Or vice versa? Or if the situation changes
over time?

• Suppose we have a one-lane bridge. How can you most efficiently manage traffic across the
bridge? Sounds simple enough. Ideas: just let people take turns, have a traffic light that
alternates turns, have a pair of flaggers, give one directionprecedence. Potential problems:
cars come in on both sides and meet in the middle. Someone’s going to have to back up. The
traffic light can be pretty annoying if you’re stuck at the redand you wait and wait and don’t
see anyone come the other way. This is an unnecessary wait.

• Suppose we have a shared printer. If multiple people want to print at the same time something
has to make sure the jobs don’t get intermingled.

• The one-lane bridge example is one example where a deadlock can arise. It can come up in
more subtle ways. Think of this like gridlock. Everyone is waiting for someone else to do
something before they can proceed. No one gets anywhere.

In a computer system, this could be a situation where two users need exclusive access to two
resources.

A simple example is two users who need to copy tapes. The system has two tape drives, and
a tape drive is necessarily granted to one user at a time. User1 requests a drive and gets
it. User 2 requests a drive and gets it. User 1 requests a second drive, but must wait until
User 2 finishes with the one he has. User 2 requests a second drive, but must wait until User
1 finished with the one he has. Uh oh. We can think of this as two antagonistic users, but
even “friendly” users may not be aware that they are holding aresource that is preventing
the other resource they need from ever becoming available.

2

CS 322 Operating Systems Spring 2008

• Suppose we have a collection of processes that are cooperating on a task. They need to
coordinate. We’ll look in some detail at process synchronization both from the point of view
of algorithms that use it and what hardware and OS support is needed to make these kinds
of programs correct and efficient.

• If you have a disk attached to the computer, and several usersof the computer, how do we
organize data on the disk so it

– is convenient for people to make use of it

– have it be an efficient organization (quick to access, not a lot of wasted space)

– enforce appropriate protection on the files, to make sure users can’t read or worse yet
modify or delete the files that belong to some other user, but can share data effectively
when appropriate?

• Network of computers – like the CS Lab.

If we have a collection of computers shared among a collection of users, how do we set
things up so again things are efficient and easy to use, yet secure?

An approach that works well in our lab, where the systems typically have only one user at a
time – the one who is sitting in front of a given computer, might not work well in a lab where
the computers are used for long, CPU intensive jobs, such as graphics rendering or scientific
computation.

Most of the problems that come up are not specific to a given OS or type of computer. In fact,
many of them come up from the eariest historical systems right up to current systems.

An interesting thing about Operating Systems, and in fact much of Computer Science, is that an
important “historical example” is often no more than a few decades old.

Some of the historical examples will likely be very familiarto you. What old systems were in your
childhood? Some from mine include the Commodore 64/128.

And even when you might think some of the issues that were important on your (or your parents’?)
old Commodore 64 or Apple][keep coming back in your PDAs or cell phones or other smaller-
scale special purpose computers.

The course is not about which is the best OS (though I’ll make my opinions known from time
to time and you can do the same). One thing we’ll see as we go is that different systems have
strengths and weaknesses that make them appropriate in different situations.

When we’re comparing approaches to a particular problem, andthe question comes up as to which
approach is better, the answer will often be “it depends.”

We use Unix-like operating systems as our model, but modern Windows systems have most of the
same ideas underneath.

Lab 0

3

CS 322 Operating Systems Spring 2008

We begin with a lab assignment...

What is an Operating System?
I am going to go quickly through highlights of the things in the first two chapters of the text. You’ll
need to read them – a lot of it should be familiar. I will end up talking about many of the topics
there today and as they become important for upcoming topics.

Possible definition (from our book): “a program that acts as an intermediary between a user of a
computer and the computer hardware.”

You can find similar definitions elsewhere.

User Programs

Operating System

Hardware

At its most basic level, the OS is a low-level program, which talks directly to computer hardware
on behalf of user programs. The operating systemkernel is the program that stays running on the
computer at all times. The kernel decides what user programscan do and when they can do it.

We may think of the OS as including a lot more than the kernel – system programs and application
programs as well.

What is this hardware? Depends... Could be a small single-userPC, could be a minicomputer,
mainframe, supercomputer. One or more CPUs, main memory, disk resources, and I/O devices.
Could even be something smaller – an embedded system or a PDA.

Much of operating system theory focuses on large, multiprogramming systems – multiple users,
multiple programs, time share.

As desktop and portable computers get more powerful, the issues that were formerly only the
concern of larger systems become important on the smaller scale.

Goals/Functions of an OS:

• facilitate use of hardware by user programs (convenience, efficiency, flexibility)

• allocate resources (CPU, memory, I/O, file storage)

• enforce security (controlled access to files, hardware resources, authentication)

These goals are often competing!

• Competing design goals:

4

CS 322 Operating Systems Spring 2008

– User wants – convenience, ease of use, reliability, safety,speed

– System wants – ease of design, implementation, maintenance, also flexibilty and effi-
ciency

The definition of theuser depends. It may be auser program, which is the user of the resources
of the computer as managed by the operating system, or the user of the computer, who runs those
programs.

Many additional programs, often lumped in as part of the “operating system” such as utility pro-
grams, editors, office suites, etc., are not part of the kernel. They may or may not be part of the
“operating system” depending on how you define it.

Common Operating System Components

Many of these involve all three of the goals/functions we listed.

• Command-interpreter - think UNIX command line or MS-DOS prompt. Deals with all of
the above. Really, a windowing system is just a way to issue thesame commands without
knowing what they are.

• Process Management“process” is a program in execution. OS responsible for creation,
deletion, scheduling, communication

• Main-memory Managementallocation, protection

• File Managementcreation, deletion, directory structures, mapping files tohardware

• I/O System Managementdevice driver interface, buffering

• Secondary Storage Managementfree space management, storage allocation, disk schedul-
ing, caching

• Networking another device to manage – high-speed information flow

• Protection Systemspecification and enforcement of access controls

• Error Detection hardware or user program errors

Mechanism vs. Policy: mechanisms are provided to perform tasks, policy determines what will
actually be done. Separation of mechanism from policy is an important principle. Allowing policy
to be changed later allows maximum flexibility.

Examples of Operating Systems

• Unix and friends

– BSD (Sun OS 4.x, DEC Ultrix, FreeBSD, OpenBSD, Darwin/OSX)

5

CS 322 Operating Systems Spring 2008

– SysV (Solaris, Irix)

– OSF/1 (DEC/Compaq Unix/Tru64, AIX, HP/UX)

– Linux

• PC systems

– DOS (MS,PC), Win 3.x

– Win 95, Win 98, Win ME

– Windows NT, Win2K, XP, Vista

– OS/2

– Mac OS N, N≤9

• Multiprogramming systems for Mainframes

– VMS (DEC VAX/Alpha)

– IBM MVS

– IBM VM

– IBM OS/360, IBM OS/390

– MULTICS

• PDA

– PalmOS

– Windows CE

• Virtual Machines

– JVM

– Video game console emulators

• Real-Time Systems

– VxWorks

– QNX

• Others

– Mach

– CP/M

– BeOS

6

CS 322 Operating Systems Spring 2008

Some History

Very Early Systems

One user at a time. Everyone involved is an expert. Sign up fora block of time to go program the
computer (possibly involving plugboards) and run the program.

This was very expensive. The machines were huge and expensive and it was sitting there idle quite
a bit while waiting for people or card readers or other very slow things.

Early Mainframe/Batch Systems

One job in the system at a time. A “batch process” is a non-interactive process. You set everything
up beforehand, it runs, you get your output.

System memory:

area
user program

operating
system

Card Reader (input)−→ Memory/CPU (computation)−→ Line Printer (output)

Big problem here - card readers and line printers are slow - what is this expensive CPU doing while
the card reader is loading a program or while the output is being printed? It’s idle. Not good.

When disks provided direct-access, the operating system of batch computers was able to use the
faster disk (in relation to the card readers and printers anyway) tospoolupcoming jobs and output.
(Spool means Simultaneous Peripheral Operation On-Line).CPU can stay busier – betterCPU
utilization .

But, we still have some idle time for the CPU - disk is still much slower than CPU, both then and
today. When a job needs access to the disk (or any other I/O) while starting up, during the run, or
when writing its output, the CPU is still idle or nearly idle. There’s also the potential for infinite

7

CS 322 Operating Systems Spring 2008

loops. If some user’s program goes into an infinite loop, it would probably have to be stopped
manually.

So we move on to...

Multiprogramming Batch Systems

Have multiple jobs in the system. The CPU can service any job that is in memory.

System memory:

job 4

operating
system

job 1

job 2

job 3

When one needs to access I/O or anything else that would cause the CPU to be idle, another job is
selected to run while the I/O request is serviced.

This brings up some new issues that we will discuss later in the semester:

• Some resident monitor program needed to be there to coordinate all of this.

• The monitor program is IN CHARGE. It’s allowed to do things thatregular user programs
can’t do.

• This is the start of the dual nature of OS – monitor vs. user.

• I/O device must be able to operate without the CPU, as the CPU would be busy with another
job when I/O is taking place.

• I/O request must be made throughsystem calls- not direct to hardware. Imagine two jobs
both sending lines of output to the printer any time they wanted.

System calls have access to the hardware, whereas the user processes should not.

Information hiding, encapsulation, all that good stuff from OOP.

The user process doesn’t know how a system call works, just how to call it and what it’s
supposed to do.

8

CS 322 Operating Systems Spring 2008

To open a file, for example, a user mode program makes a system call which runs in moni-
tor/kernel mode, which actually does the actual I/O.

The monitor program can then ensure safety of the I/O requestas well as hand off the CPU
to another job while the I/O request is processed.

• Need to choose a job to run next when one job makes an I/O request or terminates. Need for
CPU scheduling.

• Need to make sure that job 1 can’t read or interfere with job 2’s memory.Memory manage-
ment and protection.

The dual mode operation requires some hardware support.

The system needs to be able to distinguish things that users are allowed to do and things that only
the system can do.

This requires amode bit or something similar. The kernel needs to set this to “user mode” before
calling user code and user code that needs to do anything thatrequires “system mode” must be
done through a system call.

If a user program tries to perform a privileged instruction when in user mode, it will not be allowed
– will trap to the OS.

We’ll see more on this as we continue.

The ideas of traps and interrupts become important as well. If a user program does something
illegal (regardless of whether it is malicious) it should not crash the system – just “trap” to the OS.

OS can do something appropriate by printing an error or killing the process, or maybe just fixing
up whatever caused the trap.

But.. there are still significant limits...

We can still have infinite loops in programs and that’s not good. And since the users are probably
not watching as closely, it might not be noticed as quickly.

We also would need to make sure that a severe program error (bad pointers, division by 0) would
halt the user program but not the entire system, as other programs would also be in progress.

What about interactive processes?

Time-sharing Systems

The batch systems do not allow user interaction with the program. This is obviously not sufficient
in all cases, so operating systems evolved to allowmultitasking .

Users can runinteractively - I/O can include a keyboard and a terminal display (or windowing
system in a modern equivalent). A user typing at the keyboardis much slower than a computer.

People do this all the time. We work on multiple things at once. The book mentions a lawyers who
take multiple cases to keep themselves occupied.

9

CS 322 Operating Systems Spring 2008

This is done by switching user tasks orprocessestransparently. This changes what it important for
CPU scheduling. We want each interactive user to get a turn on the CPU quickly – goodresponse
time. Need to switch among processes quickly –context switching.

Such systems depend on the idea ofinterrupts , which allow devices or the operating system to
get the attention of the CPU from a user process.

You can think of each of these ideas in your own multitasking.How many tasks can you switch
among before getting overwhelmed? Is it better to work on each for a few seconds at a time, a few
minutes, or a whole day? How often do your tasks get interrupted (that e-mail inbox, for example)?

Many of the concepts we’ll talk about this term are present inmultiprogramming and time-sharing
systems.

Personal Computers

PC’s appeared when computers became cheap enough to be affordable for a single user to have
one dedicated.

Such a system has different needs - CPU utilization is generally not the biggest concern, since there
are no other jobs waiting to execute. User convenience and responsiveness are the top concerns.
One user means protection and security are not important.

But, as the desktop computer gets more powerful, many of the concepts of the multiprogramming
OS’s are working their way down into the PC world.

The time-sharing and personal computer categories have merged into the modern workstation idea.

As you know from CS 221, modern computers can be viewed as a collection of components con-
nected by a bus.

This is the kind of system we will spend most of our time considering.

Parallel and Distributed Systems

What happens when we start having multiple CPUs? They might be in the same system, or they
might be distributed across a number of systems. Or perhaps we have a whole collection of unipro-
cessor systems that might make sense to use or manage as a group.

We have a number of examples here. There is a small cluster here that we will use from time to

10

CS 322 Operating Systems Spring 2008

time.

Modern supercomputers can include thousands of processors, with combinations of shared and
distributed memory.

Many OS issues come up in such systems, and we’ll talk about those as we go forward.

Real-time systems

Used for things like reading critical sensor values or controlling some device. The devices could
range from kitchen appliance controls to the Mars explorer robot.

Hard real-time systems for critical applications - automated vehicle (car, airplane, spacecraft) con-
trol

Soft real-time for less critical - visualization, robotics, multimedia.

Handheld systems

This is a relatively new category. PDAs, cell phones. Many ofthe issues that have trickled down
from the multiprogramming and time-shared systems to the personal computer and workstation
world are now starting to get down to this level. These have relatively slower processors, smaller
displays, limited memory and non-volatile storage.

11

