Computer Science 252

Problem Solving with Java
The College of Saint Rose

Spring 2014

Topic Notes: Searching and Sorting

Searching

We all know what searching is — looking for something. In a pater program, the search could
be:

e Looking in a collection of values for some specific value (véhis the 17 in this array of
i nt?).

¢ Looking for a value with a specific property (which object ba tanvas contains the location
where | clicked the mouse?).

e Looking for a record in a database (what is the tax historytifier last four years for the
taxpayer with SSN 101-11-10097).

e Searching for text in some document or collection of docuséwhat web pages contain
the text “searching and sorting algorithms?”).

e What known amino acid sequences best match this sequencaaghtinom proteins in a
given virus?

We have done some searching this semester. Remember the destwhich image was selected
in the “DragStudents” example.

for (int imageNum = 0; imageNunxkheads.|ength; inmgeNum++) {
i f (heads[imgeNuni.contains(point)) {
sel ect edHead = heads[i mageNuni ;
dragging = true;
sel ect edHead. sendToFront () ;
}
}

We have to search through our collection of objedfisgi bl el mages) to see which one, if any,
contains the point.

How do we know that we’re done searching? In this case, we kadyng until we get to the end
of our array. But in many cases, we need only search until weti@dirst matching entry.

CSC 252 Problem Solving with Java Spring 2014

Let’s try to get some idea of how much “work” it takes for us &t gn answer. As a rough estimate
of work, we will count how many times we call tleont ai ns method of avi si bl el mage.

If we haven Vi si bl el mages, how many calls to th¥i si bl el mage cont ai ns method will
we have to make before we know the answer? In this case, it's par entry in the array, so
times.

In some other cases, it depends on how quickly we find the antimene of theVi si bl el mages
contains the point at all, we need to checkralbefore we know the answer. If one does contain
the point, we can stop as soon as we find the first one that osnitai It might be the first,

it might be the last — we just don’t know. Assuming that therah equal probability that the
Vi si bl el mage that contains the point is at any of tmepositions, we have to examine, on
averagey Vi si bl el mages.

In this case, we can’t do any better. Perhaps if we decideldeolcin some other order rather than
always examining the first, then the second, and so on.

We are searching in an array, where we have the option to lbakyaelement directly. We will
consider an array afnt , though most of what we discuss applies to a wider range afrtéable”
items.

A method to do this:

| *
* Search for numin array. Return the index of the nunber, or
* -1 if it is not found.
* [
int getlndexOrNunm(int[] array, int nunm {
for (int index = 0; index < array.length; index++) {
I f (array[index] == nun) {
return index;
}
}

return -1;

}

The procedure here is a lot like the searches we have seenawWenh way of knowing that we're
done until we either find the number we're looking for, or unté get to the end of the array. So
again, if the array contains numbers, we have to examine alin an unsuccessful search, and,
on averagey; for a successful search. We could instead search from théoethé front, and we
would have no reason to believe that we’'d do any better oreyans average.

Now, suppose the array has been sorted in ascending order.

Well, we can do the same type of search — start at the begimmddceep looking for the number.
In the case of a successful search, we still stop when we firi8uit now, we can also determine
that a search is unsuccessful as soon as we encouter any miangiee than our search number.
Assuming that our search number is, on average, is going fioumel near the median value of the

2

CSC 252 Problem Solving with Java Spring 2014

array, our unsuccessful search is now going to require teaxamine, on averagg,items. This
sounds great, but in fact is not a really significant gain, asw¥l see. These are all examples of a
linear search — we examine items one at a time in some linear order until wethe search item
or until we can determine that we will not find it.

But there is a better way. To get the intuition for the next wagearch for a number, think back
to your favorite number guessing game. | pick a number betiesnd 100 and you have to guess
what it is. The game usually goes something like this:

Me: Quess ny nunber
You: 50.

Me: Too Hi gh.

You: 25.

Me: Too Low.

You 37.

Me: Too Hi gh.

You 31.

Me: That's right.

If you know that there is an order — where do you start yourcgain the middle, since then even
if you don't find it, you can look at the value you found and setaé search item is smaller or
larger. From that, you can decide to look only in the bottorti bfathe array or in the top half
of the array. You could then do a linear search on the apmtephalf — or better yet — repeat the
procedure and cut the half in half, and so on. Thislgrary search. It is an example of divide
and conquer algorithm, because at each step, it divides the problemlin ha

A Java method to do this:

| *

* Binary Search for numin array.

* |

int getlndexONunm(int[] array, int num {
int md;
int left = 0;

int right = array.length - 1;
while (left <right) {
md = (low + high) / 2;
i f (array[md] == num {
/'l numis sanme as m ddl e nunber
return md;
} else if (num< array[md]) {
/[l numis smaller than m ddl e nunber
right = md - 1;
} else {
/1 numis larger than m ddl e nunber

3

CSC 252 Problem Solving with Java Spring 2014

left = md + 1;
}
}

return -1;

}

How many steps are needed for this?

Each time, we cut the part of the array we still need to seartiaif.

How many times can divide number in half before you get to 1?

If you start withn, you divide to get then?, ¢, ... and eventually get 1.

Let’s suppose that = 2%, then divide ta2*—1, 282, 23 .. 20 = 1; divide k times by 2.

In general, we can divide by 2 at mostog, n times to get down to 1.

So how much better is this, really? In the case of a small athaydifference is not really signifi-
cant. But as the size grows...

Search#elts 10 100 1000 1,000,000
linear 10 100 1000 1,000,000
binary 8 14 20 40

That's pretty huge. Even if you think about the search readlgding on averagg steps, for the
1000-element case, the binary search is still winning 50B0to The logarithmic factor is really
important.

We can see this better by looking at graphs:ofslog n andn. The difference is large, and gets
larger and larger as gets larger. Even if we multiply by constant factors in aemupt to make the
logn graph as large as thegraph, there will always be a value oflarge enough that the scaled
function forn will be larger than the scaled function flarg n. More on this later.

Sorting

We’'ll now look at sorting, since we will need to be able to samtarray to use binary search. As
we will see, sorting takes a fair amount of time, but if we aneng to be searching a large array a
lot, the savings obtained by using binary search over limélhmore than make up for the cost of
sorting the array once.

Suppose our goal is to take a shuffled deck of cards and totsescending order. We'll ignore
suits, so there is a four-way tie at each rank.

Describing a sorting algorithm precisely can be difficukt’s consider a couple.

1. selection sort

CSC 252 Problem Solving with Java Spring 2014

2. insertion sort

Selection Sort

First, we will look at this procedure:

e Search for the smallest card, and move it to the front of thok.de
e Search for the next smallest card, and move it to the secasitigroin the deck.

What | have described is a form ofdection sort — at each step, we select the item that goes into
the next position of the array, and put it there. This getsnessiep closer to a solution.

public void selectionSort(int[] array) {

for (int i =0; i <array.length - 1; i++) {
int smallestPos = i;
for (int j =1i+1l; j] < array.length - 1; j++) {

if (a[j] < a[smallestPos) {
smal | est Pos = |;
}
}
int tenp = array[smal | est Pos];
array[smal | est Pos] = array[i]

array[i] = tenp;

How long does this algorithm take? As we did with searchingwen't try to calculate an exact
time, but we will estimate the cost by computing the numbecafiparisons done in sorting an
array. We could alternately choose the to count the totallbmirof “visits” to an array element,
but the “shape” of the answer will be the same no matter whit¢hese we compute.

Suppose the original array haslements, where > 1. Then it takes: — 1 comparisons to find
the smallest element of the array (compare the first with geersd, the largest of those with the
third, etc.). In general, the number of comparisons need@&dd the smallest element is one less
than the number of elements to be sorted. Once this elemsrid®n put into the first slot of the
array, we need to sort the remaining- 1 elements of the array. By the argument above, it takes
n — 2 comparisons to find the largest of these. We continue witkhesgive stages taking— 3,

n — 4, all the way down to the last pass through when there are aetements and it takes only

1 comparison. (Once we get down to 1 element there is notbibg tlone.)

CSC 252 Problem Solving with Java Spring 2014

Thus ittakesS = (n — 1) + (n — 2) + (n — 3) + ... + 3 + 2 + 1 comparisons to sort a list of
elements. We can compute this sum by writing the list forsadd backwards, and then adding
the columns:

S=(n-1) + (n-2) + (n-3) + ... + 3 + 2 + 1
S = 1 + 2 + 3 + ... +(n-3) + (n-2) + (n-1)
2S = n + n + n + ...+ n + n + n = (n-1)*n

ThereforeS = "22‘”. The graph of this as increases looks like? — a parabola. Therefore,
selection sort takes? time, which is much worse than the behavior for the searchiggrithms
we saw last time.

I nsertion Sort

The selection sort builds up the sorted list by finding the lesaand putting it into the first
position, the sthe second smallest and putting it into tkerse position, etc., until the entire list is
sorted.

Insertion sort takes a different approach. It builds up &esblist by noticing that we can build a
sorted list of sizen + 1 by taking a sorted list of size and inserting the: + 15" element in its
correct position.

We will not look at this algorithm in great detail here. Likelsction sort, insertion sort takes
time.

Merge Sort

Our next sorting algorithm proceeds as follows:

e First, our base case: If the array contains 0 or 1 elemerdse th nothing to do. Itis already
sorted.

o If the array has two or more elements in it, we will break it alfhsort the two halves, and
then go through and merge the elements.

The Java method to do it;

public void sort(int[] array) {
/'l create tenpArray for use in nerging
int[] tenpArray = new int[array.|ength];
nmergeSort(array, 0, array.length-1, tenpArray);
}

| *

CSC 252 Problem Solving with Java Spring 2014

* PRE: left and right are valid indexes of array.

* tenpArray.length == array. |l ength
* POST: Sorts array fromstart to right.
* |

public void nmergeSort(int[] array, int left, int right, int[] tenpArray) |
if (left <right) {
int mddle = (right + left) / 2;
nergeSort (array, left, mddle, tenpArray);
nmergeSort (array, mddle + 1, right, tenpArray);
nerge(array, left, mddle, right, tenpArray);

The methodrer ge takes the sorted elementsanr ay[| ef t. . mi ddl e] andarray[m ddl e+1. . ri ght]
and merges then together using the atraypAr r ay, and then copies them back irdor ay.

PRE: left <= mddle <=right and left, mddle, right are valid indices f
tenpArray.length == array. |l ength
array[left..mddl e] and array[m ddl e+1..right] nust both be sort et
POST: Merges the two halves (array[left..mddle] and array[m ddl e+1..ri
together, and array[left..right] is then sorted.

* ok X % oF

*

*/

private void nmerge(int []Jarray, int left, int mddle, int right, int[] tel
int indexLeft = left;
int indexRight = mddle + 1;
int target = left;

/'l Copy both pieces into tenpArray.

for (int i =left; i <=right; i++) {
tenpArray[i] = array[i];

}

/'l Merge themtogether back in array while there are
/'l elements left in both hal ves.
while (indexLeft <= mddle &% i ndexRi ght <= right) {
if (tenpArray[indexLeft] < tenpArray[indexRight]) {
array[target] = tenpArray[indexLeft];
i ndexLeft ++;
} else {
array[target] = tenpArray[indexRi ght];
i ndexRi ght ++;
}

t ar get ++;

CSC 252 Problem Solving with Java Spring 2014

}

/'l Move any remaining elenents fromthe left half.
while (indexLeft <= mddle) {

array[target] = tenpArray[indexLeft];

i ndexLeft ++;

t ar get ++;

}

/'l Move any remaining elenents fromthe right half.
whil e (i ndexRight <= right) {
array[target] = tenpArray[indexRi ght];
i ndexRi ght ++;
t ar get ++;
}
}

Again we’d like to count the number of comparisons necessamyrder to sort an array of
elements. Unfortunately, the code shown above doesntidechny comparisons — all of the
comparisons are in theer geRuns method.

Even without looking at the code mer ge we can estimate the number of comparisons made. If
we are trying to merge two sorted lists, every time we compaoselements at the ends of the lists
we will put one in its correct position. When we run out of thereénts in one of the lists, we put
the remaining elements into the last slots of the sorted Asta result, merging two lists which
have a total of, elements requires at mast— 1 comparisons.

Suppose we start with a list of n elements. [&k) be a function telling us the number of com-
parisons necessary to mergesort an array wighements. As we noted above, we break the list in
half, mergesort each half, and then merge the two piecess ffeutotal amount of comparisons
needed are the number of comparisons to mergesort eachlislthe number of comparisons
necessary to merge the two halves. By the remarks above, theamnwof comparisons to do the
final merge is no more than— 1. ThusT'(n) <= T(n/2)+T(n/2)+n — 1. For simplicity we’'ll
replace the: — 1 comparisons for the merging by the even largen order to make it easier to
see how to approximate this result. We h@¥e) = 2 - 7'(n/2) + n and if we find a function that
satisfies that equation, then we have an upper bound on thieanwhcomparisons made during a
mergesort.

Looking at our algorithm, no comparisons are necessary \heenize of the array is 0 or 1. Thus
T(0) = T(1) = 0. Let us see if we can solve this for small values.oBecause we are constantly
dividing the number of elements in half it will be most conseant to start with values of which
are a power of two. Here we list a table of values:

Table ofn vs. T'(n) goes here...

Notice that ifn. = 2% thenk = log, n. ThusT(n) = n-log.n. In fact this works as an upper bound
for the number of comparisons for mergesort evenig not even. If we graph this we see that it

8

CSC 252 Problem Solving with Java Spring 2014

grows much, much slower than the graph for a quadratic (famgpte, the one corresponding to
the number of comparison for selection sort).

This explains why, when we run the algorithms, the time forgasort is almost insignificant
compared to that for selection sort.

