
Computer Science 252
Problem Solving with Java
The College of Saint Rose
Spring 2014

Topic Notes: Java Review and Objectdraw Basics

Event-Driven Programming in Java
A program expresses an algorithm in a form understandable bya computer.

That “understandable” form is a program and must be written in aprogramming language.

There are many, many programming languages, each of which has its own advantages and dis-
advantages. We teach our introductory sequence in one particular (and very popular) language:
Java.

We choose Java because it is in wide use, both academically and industrially, can be used to write
programs that perform a wide variety of tasks to run on a wide variety of computers. It is also
object oriented, a term we will see in more detail soon.

We will see two main types of programs. Some of our programs will execute from beginning to
end to compute a set of outputs (usually text printed to the screen or to files on the computer’s
disks) from a set of inputs (entered at the keyboard or read from disk files). Some of you have seen
both types of programs, while others are most familiar with applications from your CSC 202 class
or other experience.

Our first concern will be to introduce or refresh your memory aboutevent-driven programs. These
are more interactive and, in our case, graphical. An event-driven program responds to actions such
as a mouse click or a key press by performing some specific action, then waits for the next event.

Java was designed with events in mind, and we will take advantage of this. It means we can write
programs that respond to mouse movements and clicks, and we will use those programs to display
and manipulate some simple graphical objects.

A Simple Program

So we consider this “real” event-driven Java program:

See Example: TouchyWindow

If we run the program, we see that it brings up an empty window.When I press the mouse button
in the window, a message appears, and when I release the mousebutton, it disappears.

While that in itself doesn’t seem very exciting, keep in mind that the program we are running is
very simple. It fits easily on one screen. Let’s take a look at the text of this program and see what
it all means and why this program does what it does.

CSC 252 Problem Solving with Java Spring 2014

import objectdraw.*;
import java.awt.*;

Theseimport lines tell Java that our program is going to build upon some code that’s already
been written by others. “objectdraw” is a software library developed by the authors of our text that
will allow us to write event-driven graphical programs without worrying about some of the gory
details. “java.awt” is part of the standard Java library that helps to display windows on the screen.

These two lines will appear at the top of nearly every programwe write this semester. Nearly all
Java programs begin with a series ofimport lines to bring in the building blocks they will use.

You have almost certainly imported things like Java’sScanner andRandom classes in previous
programs.

/*
* A first Java/objectdraw example.

* From Bruce, Danyluk, Murtagh, 2007, Chapter 1.

*
* $Id: objectdraw.tex 2308 2014-01-21 05:50:55Z terescoj $

*/

This next segment is acomment. As you know, everything here between the/* and the*/ is
ignored by the computer. It is there entirely for our benefit –the humans who need to write or
understand the program.

public class TouchyWindow extends WindowController {

This line gives us (and Java) a lot of information. First, thetermpublic is telling Java that the
program is “public” – we can run it. We’ll see alternatives topublic in some contexts, but every
one of our programs will include a class that starts with “public class”.

The wordclass tells Java that we are about to define a “class”. The reason forthe term will
become more clear soon.

TouchyWindow is the name of our program (and the name of theclass that defines the pro-
gram.

extends WindowControllermeans that this newclasswe’re defining calledTouchyWindow
is going to build upon (“extend”) another, already existingclass, called aWindowController.
Essentially we’re saying that we’d like to use aWindowContoller, but we’re extending it to
have some new functionality above and beyond, and we’re calling that newclass TouchyWindow.

TheWindowController class is defined by the objectdraw library. It is what puts the win-
dow (i.e., the white box) up on the screen. By itself, it never displays anything in the window. It’s
up to us, in our extension, to make use of that box to do something (slightly) more interesting.

2

CSC 252 Problem Solving with Java Spring 2014

Lastly, there is a “{” character, which tells us that theclass header is complete and now we’re
ready to start to define theclass body.

In our case, the class body contains twomethods:

/* This method will execute when someone clicks on the window.
It will result in a message being displayed.

*/
public void onMousePress(Location point) {

new Text("I’m touched", 40, 50, canvas);
}

/* This method will execute when the mouse button is released.
It will remove everything drawn in the window, which in this
case can only be the text message displayed by the above.

*/
public void onMouseRelease(Location point) {

canvas.clear();
}

These methods are where the actual instructions are given. Each method is preceded by a comment
describing what it does. But we’ll look at the methods themselves.

There are two methods defined:onMousePress andonMouseRelease. In each case, the
name of the method is preceded by “public void” and followed by “(Location point).
For now, we’ll just say that these methods need to have these extra words and symbols – their
meanings and what else we might put in those positions will come later. This is all called the
method header.

Following the method header, there is again a{ character, which denotes the start of themethod
body.

In each of our methods, the method body consists of a single Java statement. InonMousePress,
we tell Java that we want anew piece ofText to be drawn on our screen, and we specify what
text we want, where it should be placed (40 and 50 arecoordinates – more on this soon), and on
what we should draw it (thecanvas, which is objectdraw’s name for the window placed on our
screen by theWindowController).

Specifically,Text is a class, defined by the objectdraw library. When we say “new Text”,
we are instructing Java to find theclass definition for Text and construct an object of that
class. The specifics of how to create thatText object are determined by theparameters listed in
parentheses after “new Text”.

In theonMouseRelease method, the statement is an instruction to thecanvas to erase any-
thing that’s been drawn on it.

Note that each method and the class definition itself is terminated by a “}” character. This ends the
definition of either the method body or class body that was started by a{ character.

3

CSC 252 Problem Solving with Java Spring 2014

So we have a complete program – why does it make our program do what it does when we run it?

As their names suggest, the instructions in the bodies of ourmethods execute in response to mouse
events. Specifically, when someone presses the mouse buttonin our window, theWindowController
looks for a method namedonMousePress and executes the statements in that method. Similarly,
when the mouse is released, the instructions inonMouseRelease are executed.

You’ll notice that there is nomain method here – the program does not do anything (beyond the
creation of the “canvas” which is handled by theWindowController) until we interact with it
using the mouse.

Other Mouse Event Methods

As you might guess, there are other “mouse event” methods available that we can use to make our
program more responsive. Any class thatextends WindowController may define:

public void onMouseClick(Location point)
public void onMouseEnter(Location point)
public void onMouseExit(Location point)
public void onMousePress(Location point)
public void onMouseRelease(Location point)
public void onMouseMove(Location point)
public void onMouseDrag(Location point)

Finally, there is one additional method we can define in aWindowController, calledbegin.
It looks very similar to the others except that it doesn’t have the “Location point”. The
begin method, as its name suggests, executes exactly once: when the program begins.

We will soon make use ofbegin and more of the mouse event handlers, but first, we’ll take a
look at what else we can draw besides bits of text.

Graphics Primitives
To fully understand the instructions within the method bodies we have examined, you need to
understand how the system for drawing graphics within a Javaprogram work.

To place an object on the screen, you include an instruction called a construction in a method. Each
construction will include:

• The wordnew

• The name of the type of thing you want to draw. Possibilities include:

FramedRect, FilledRect
FramedOval, FilledOval
Text, Line

4

CSC 252 Problem Solving with Java Spring 2014

• a list of extra bits of information calledactual parameters that determine the size and position
of the object displayed.

Some examples:

new FramedRect(10, 10, 40, 60, canvas);
new Line(x1, y1, x2, y2, canvas);
new Text("hello there", x, y, canvas);
new FilledOval(100, 100, 30, 60, canvas);

The most important of the parameters included in these constructions are those that specify the
locations and dimensions of objects. They are interpreted in a coordinate system in which:

• The basic unit of measurement is one dot on the computer’s display (i.e., onepixel).

• The y-coordinate is “upside down” compared to the convention from mathematics (i.e., the
bigger the y-coordinate, the closer to the bottom of the screen).

• Theorigin (i.e., the point (0,0)) is located in the upper left corner of the program’s window
(not of the display).

For theFramedRect, this draws the outline of a rectangle with the upper left corner at (10, 10),
with a width of 40 and a height of 60. So where is the lower rightcorner?

TheLine is drawn from(x1,y1) to (x2, y2).

TheText is drawn with its upper left corner at(x, y).

TheFilledOval is drawn within an “imaginary box” with its upper left cornerat (100, 100),
width of 30, height of 60.

Looking back at the TouchyWindow example, we can see that thetext is in fact placed at coordi-
nates (40,50) in this coordinate system.

Giving Names to Objects
Now, let’s experiment a bit with these different event typesand object types.

See Example: ColorEvents

There are two new things in this example. First, we need to know how to set the color of an object.
This is done with the statement:

setColor(Color.xxx);

5

CSC 252 Problem Solving with Java Spring 2014

where “xxx” is one of the colors Java knows about.

But just saying “setColor” isn’t enough – we need to tell Java what object’s color is supposed
to change.

To do this, we need to give the object a name. This is the other new thing in this example. These
names are calledvariables.

In order to use a variable to give a name to an object, we need todo two things:

1. We mustdeclare the variable. In this case, we are declaringinstance variables since they are
defined inside of our class, but outside any method body. We will see other types of variables
later.

private FilledOval oval;
private FramedRect rect;
private Line line;

A declaration “introduces” the name to Java, so when we use itlater on, it knows what
the name “refers” to. In this case, we’re saying that the nameoval is going to refer to a
FilledOval object.

2. We must associate a value with the variable. This is done using an instruction called an
assignment statement.

Our example has three assignment statements:

oval = new FilledOval(50, 50, 100, 200, canvas);
rect = new FramedRect(200, 10, 50, 100, canvas);
line = new Line(20, 300, 300, 20, canvas);

Note how we construct the object on the right hand side of the assignment operator (the=)
and put the name where we wish to remember the object on the left.

Note that we can use any name we want for our variables. There’s nothing saying we couldn’t use
the name “oval” for our FramedRect and “rect” for our FilledOval. But that would be
confusing. It’s always very good practice to use meaningfulnames (and we’ll take points off your
labs and projects if you don’t). It makes the program easier to read and to understand.

Recall that there are a few restrictions on the words we can usewith names:

• Names must start with a letter.

• Names are case sensitive.

• Letters, digits, and underscores may be used in names.

6

CSC 252 Problem Solving with Java Spring 2014

• Names may not be a word already used by Java (likeclass or extends).

Further, Java programmers generally agree upon a set ofnaming conventions. We will look at these
in more detail as we go on, but for now, we will name all variables using lowercase letters, except
when we have a name that is made up of multiple words, in which case we capitalize all but the first
word. For example, if we want to give a name for a little red circle, an appropriate name would be
littleRedCircle. Other variations such asLittleRedCircle, LITTLE RED CIRCLE
or LiTtLeReDcIrCle would be valid names, but would not follow the naming convention for
variable names.

Now that we have our variables and have assocated objects with them, we can use those variables
to tell Java which objects to use for oursetColor() statements.

rect.setColor(Color.blue);

Just like our mouse event handlers (e.g.,onMousePress) are methods of ourWindowContoller
classes,setColor is a method of the classes that define our graphics primitives(in this case, the
FramedRect). The above shows how we call a method of a class.

A good way to think about this is that we are “sending a message” to the object. So we have the
name of thisFramedRect, and we’re saying “heyrect, set your color to blue!”.

We will soon see many more methods that will allow us to send messages to the graphics primitives,
and we’ll write our own methods for the more complex graphicsobjects we’ll define ourselves.

This next example uses one more method to modify an object: themove method.

See Example: SunAndMoon

Everything here is familiar except:

heavenlyBody.move(0, 1.5);

As you might guess, this message tells the object namedheavenlyBody to move 0 pixels in the
x direction and 1.5 pixels in the y direction (down).

Every time we move the mouse in the window, this code executes, moving the sun down a bit. But
in theonMouseDrag method, the circle moves by -1.5 in the y direction, so it moves up.

Accessing the Mouse Location
There is another important situation in which names are usedto refer bits of information your
program needs to work with. When the instructions within an event handling method such as
onMousePress are followed, it is sometimes handy to refer to the coordinates where the mouse
is located when the event occurs. Java makes this possible byletting you give it a name that should
be associated with this information within the header of themethod.

7

CSC 252 Problem Solving with Java Spring 2014

In fact, Java doesn’t just let you provide such a name — it requires that you provide one. That is
why we have had to include the text “(Location point)” in the header of each mouse event
handling method we have written. This phrase tells Java thatwe want to be able to use the name
point to refer to the place where the mouse is located. We just haven’t actually used this ability
yet.

See Example: MouseDroppings

This program places a small red circle on the canvas every time the mouse pointer moves.

The only line of interest here is

new FilledOval(point, 10, 10, canvas).setColor(Color.red);

Two things are different here from previous examples.

First, we have replaced the first two parameters to theFilledOval construction, which specify
the x and y coordinates of the oval, with a single parameter, “point”.

Each time the mouse is moved, before following the instructions in our method body, Java makes
the name “point” refer to the coordinates of the current mouse position. Whenit sees the name
point in the construction, it uses the coordinates of the mouse as if we had typed them in while
writing the program.

When used in this way, the namepoint is called aformal parameter.

Note that the phrase “Location point” looks a lot like a variable declaration. The name
“Location” describes the kind of thing thatpoint will refer to just as the “rect” in

private FramedRect rect;

described the kind of information that could be associated with the namerect.

There is nothing special about the word “point” in this situation other than it appears in the
method’s header. Just as we can choose any word we want to use for an instance variable name, we
can choose things other than “point” as a formal parameter name. If we take the method from
this example and replace all the “point”s with a different name like “mouseLocation”, the
program will work the same way.

Remembering information between events
Now that we have seen how to use the mouse location for an event, let’s consider a case where we
need not only thecurrent mouse location, but aprevious mouse location as well.

We will construct a program to draw “Spirographs” – when the mouse is pressed then dragged, a
series of lines are drawn from the press point to the current location.

See Example: Spirograph

8

CSC 252 Problem Solving with Java Spring 2014

Note that in this example, the only thing done inonMousePress is to save the value of the
formal parameterpoint in an instance variablelinesStart. If we did not do this, the value
of point would be lost.

The instance variable declaration is of typeLocation. That makes sense –point is aLocation,
so the instance variable we’d use to store its value would also be aLocation.

Then in theonMouseDrag method, we use the savedLocation in linesStart as one end-
point of aLine that we draw to the currentpoint from onMouseDrag’s formal parameter.

Now let’s consider a small variation – inonMouseDrag, rather than simply drawing aLine,
we’ll also update the savedLocation value.

What have we done? We’ve created a “scribber” drawing program!

See Example: Scribble

And now, we’ll look at an example where we create an object in response to one event and change
it in response to subsequent events.

See Example: RubberBand

Here, we start by drawing a very small line – from thepressedPoint to itself – when the mouse
is pressed. We remember thatLine in an instance variable.

Then when the mouse is dragged, we modify thatLine to have a new endpoint at the current
mouse location. The result is a “rubber banding” effect.

Using Numbers
So far we have been using numbers only as coordinates for graphical objects. We’ll soon be using
them for much more. We’ll first look at a very simple example that counts the number of times the
mouse has been clicked in the window, and displays aText object showing the current count.

See Example: ClickCounter

One of our instance variables,count, is of typeint (for “integer”). This is a variable that gives
a name to a number (rather than to a graphical object). It can contain any integral value from about
negative 2 billion to positive 2 billion. Certainly plenty for our purposes!

In thebegin method, we give this variable its initial value of 0. Then inonMouseClick, we
add one to its value and reassign that result back tocount.

This example is also the first one that demonstrates an important feature of good programming
style: the use ofconstants. Note the following lines at the top of the class body, just above our
instance variable:

private static final int DISPLAY_X = 150;
private static final int DISPLAY_Y = 200;

As our programs become more complex, we will be using many numeric values. Using many

9

CSC 252 Problem Solving with Java Spring 2014

somewhat arbitrary numeric values in a program can make the program difficult to understand and
modify. We can improve the situation by associating the values with names so that we are reminded
what the values signify when we see the names used.

Java a mechanism to enable us to use such names effectively. If you include the words “static
final” in a variable’s declaration, this indicates that the valueassigned to it in the declaration
will never change. The most important word here is “final”. This means that its value cannot be
changed (possibly by mistake)

Note that not everything can be a constant. Constants may not depend on anything created when the
program starts up (except other constants). In particular,a constant may not depend oncanvas.
Thus we may never have a constant of typeFilledRect, for example.

Conditional Execution
We have considered examples where we needed to remember a point (i.e., a Location) or a
graphics object (e.g., aLine) from one event to the next. Now, let’s look at an example where
we need to remember both a point and a graphics object from oneevent to the next. This program
draws rectangles interactively. When the mouse is pressed, the coordinates are saved as one corner
of a rectangle to be drawn. As the mouse is dragged, a rectangle is drawn with that point as one
corner, the current point as the other. Finally, when the mouse is relased, the final rectangle is
drawn.

Most of what we need to do here is similar to previous examples. But let’s think through how to
approach this.

First, which event handlers will we need? We need to start drawing when the mouse is pressed,
need to redraw the rectangle as the mouse is dragged (“temporary” rectangles that provide visual
feedback to the user), and draw our final (permanent) rectangle when the mouse is released.

Next, we will consider what information we need in each eventhandler and how we can get our
hands on that information.

When theonMousePress method is invoked, the parameter will give us the coordinates of one
corner of the rectangles we’ll be drawing. We don’t draw anything yet, but this is information we
will need. So we save it in an instance variable.

When the mouse is dragged, we receive the other bit of information needed to draw the temporary
rectangle: the current mouse position. We can use another form of theFramedRect constructor,
one that takes twoLocations, to draw the appropriate temporary rectangle.

new FramedRect(firstCorner, point, canvas);

But there’s more. What if this wasn’t the first mouse drag event?Then, we need to remove the
previous temporary rectangle before drawing a new one. Thatmeans we had better give a name to
the temporary rectangle in an instance variable. Then, we can remove the previous temporary
rectangle from the canvas before we draw the new one.

10

CSC 252 Problem Solving with Java Spring 2014

tempRect.removeFromCanvas();
tempRect = new FramedRect(firstCorner, point, canvas);

If we do this, we’ll encounter some problems. The first time the onMouseDrag event handler
is called, we will try to remove the object referred to by the nametempRect, but that name had
never been assigned a value! Essentially, we are trying to send a message to nothing, and Java will
respond by printing a long and messy error message. The first part of the message will mention
aNullPointerException. That’s usually a good indicator that you’ve made use of a name
before giving that name a value.

So what do we need to do? We need to make sure we only try to remove the rectangle referred to
by tempRect from the canvas if it has been drawn.

We’ll use two steps to handle this. First, we’ll givetempRect a special value in theonMousePress
event to indicate that it does not refer to any object yet. In Java, an object name that refers to noth-
ing can be assigned the special valuenull.

Then inonMouseDrag, we will first check to see if the value oftempRect is something other
thannull. If it is, that means it refers to an actual rectangle and we can remove it from the canvas.

We need to ask that question “is the value oftempRect not equal tonull”, which, as you know,
is done in Java using aconditional, often referred to as an “if statement”:

if (tempRect != null) tempRect.removeFromCanvas();
tempRect = new FramedRect(firstCorner, point, canvas);

We can then complete the program by implementing theonMouseRelease method. Here, we’ll
need to remove the last temporary rectangle from the canvas (but only if we know it exists!), then
draw the permanent rectangle using the release point.

See Example: Rectangles

Clicking on Graphical Objects

Armed with the conditional construct, we can add a bit more meaningful interaction to our pro-
grams. We can react differently if a mouse event’s location indicates that the mouse is over a
particular object.

See Example: NudgeBall

In this example, we have a ball on the canvas. When the mouse is clicked, we move the ball to the
right if the click point was inside the ball. The key line hereis a conditional:

if (ball.contains(point))
ball.move(BALL_MOVE, 0);

The contains method exists for all of our graphical object and tells us whether the given
Location lies within the bounds of that graphical object.

11

CSC 252 Problem Solving with Java Spring 2014

We have now seen two types ofconditions used as the test for our conditional statement:

if (tempRect != null)

and

if (ball.contains(point))

In both cases, we need to decide whether or not to execute the statement immediately following
theif statement. This is done by evaluating theboolean expression inside the parens following
the keywordif.

A boolean expression is one that must evaluation to eithertrue or false. If it evaluates to
true, the statement is executed. If it evaluates tofalse, the statement is skipped.

The first is the result of a comparison between a name and the special valuenull. We will see
other comparisons soon.

The second is the result of sending a message to an object. This message returns eithertrue or
false depending on whether the object contains the given point.

This example also includes more constants.

// a constant defining the size of the ball
private static final int BALL_DIAMETER = 50;
// a constant defining the initial location of the ball
private static final Location BALL_POSITION = new Location(100, 100);
// a constant defining how far to move the ball when clicked
private static final int BALL_MOVE = 10;

In addition toint constants like we have seen previously, this example also has aLocation
constant.

Random Numbers
For our next example, we will introduce some randomness intoour programs. Specifically, we will
augment the “Spirograph” example to pick a random color (from a set of 4 possible colors) for
each Spirograph we draw.

We begin with the code from the original Spirograph. If we would like each Spirograph we draw
to have a randomly-chosen color, we need to make some enhancements:

1. We need to be able to choose a color randomly.

2. We need to be able to remember which color we chose so all of the lines in the spirograph
are drawn with that color.

12

CSC 252 Problem Solving with Java Spring 2014

Recall that Java’sRandom class provides this capability.

We’ll want to choose a random integer from 0-3 every time the mouse is pressed and a new spiro-
graph is started. So inonMousePress, we pick a number and store it in another instance variable
we’ll call colorNumber.

But a number isn’t a color; we need to translate that number into one of four colors to use. Once
we’ve picked a color, we will store it in an instance variablenamedcurrentColor, declared as
typeColor.

if (colorNumber == 1) {
currentColor = Color.red;

} else if (colorNumber == 2) {
currentColor = Color.blue;

} else if (colorNumber == 3) {
currentColor = Color.magenta;

} else {
currentColor = Color.green;

}

Now, we have assigned the namecurrentColor to be one of four colors based on a randomly-
chosen value. All that remains is to apply that color to each line drawn in theonMouseDrag
method.

See Example: ColorfulSpirograph

Using Custom Colors
So far we have used only a handful of pre-defined colors likeColor.red, Color.black, etc..
We can extend beyond this limited color choice by creating our own objects of the classColor.

We can create any hue we wish by mixing the appropriate amounts of the primary colors of light:
red, green, and blue. Computer monitors (and televisions, etc.) are typically made of lots of red,
green, and blue light sources.

If we want a purple color to use for our graphics objects, we can mix red and blue:

purple = new Color(255, 0, 255);

The three parameters to theColor constructor are the amount of red, green, and blue to use. Each
is in the range of 0-255, where 0 means don’t use any of that color, 255 means use the maximum
amount.

We will talk more later about creating just the color you havein mind. For now, let’s think about
how we can create an entirely random color.

13

CSC 252 Problem Solving with Java Spring 2014

Well, if a Color object is constructed from three numbers in the range 0-255,we can just generate
three random numbers in that range and use them to construct our color.

See Example: MoreColorfulSpirograph

In this case, we choose a color when the mouse is pressed and continue to use that same color
for all the lines in a given spirograph. We can make our program even more colorful by choosing
a random color each time the mouse is dragged, thereby makingeachLine in our spirograph a
different color.

See Example: CrazyColorfulSpirograph

Dragging Objects
A very common operation in our graphical programming will involve dragging items around the
screen.

Recall that a “drag” involves pressing the mouse on the objectto be dragged, dragging the mouse
(with the button down) and having that object follow the mouse pointer, and finally, “dropping”
the object at the position where the mouse is released.

How might we accomplish this?

1. We need to determine if the mouse is pointing at the object when it is pressed.

2. We need to move the object to follow the mouse while it is dragged.

3. We need to place the object at its new position when the mouse is released.

We’ll start with a simple example that will allow us to drag a circle around the window:

See Example: UglyDragABall

Consider the three methods involved in performing the drag operation:

public void onMousePress(Location point) {

if (ball.contains(point)) {
// note that we’ve grabbed the ball and remember this point
ballGrabbed = true;

}
}

In onMousePress, we simply check to see if the location of the mouse press is inside the object
we would like to drag. If so, we set aboolean instance variable totrue.

A boolean variable is one that can contain only two possible values:true or false.

14

CSC 252 Problem Solving with Java Spring 2014

// update lastMouse location
public void onMouseDrag(Location point) {

if (ballGrabbed) {
ball.moveTo(point);

}
}

While the mouse is being dragged, we check to see if the booleanvariable istrue. If so, we move
the object to follow the mouse.

This also demonstrates a method of our graphics objects we have not yet seen: themoveTo
method. This will take a graphics object that is already on the canvas and move its upper left
corner to the givenLocation.

public void onMouseRelease(Location point) {

if (ballGrabbed) {
ball.moveTo(point);
ballGrabbed = false;

}
}

And now, when the mouse is released, we again check to see if the boolean istrue. If so, it means
we have been dragging and now need to move the object to its final position, and set the boolean
back tofalse so we do not attempt to continue dragging this object (at least until the next time
the mouse is pressed on the object).

But this is not a very satisfying “drag” effect. No matter where on the object the mouse is pressed,
the object winds up having its upper left corner follow the mouse pointer. So when the object first
starts to move, it appears to “jump”.

Fortunately, this is not very difficult to fix. Consider this improved version:

See Example: DragABall

We add one more instance variable related to the dragging calledlastMouse that remembers the
most recent mouseLocation for theonMousePress or onMouseDrag event.

What does this do for us? Well, if we move the object to be dragged by thedifference between
where the mousewas and where the mouseis, that object will move by exactly the same amount
as the mouse just moved. This is precisely what we need to achieve a more natural “drag” func-
tionality.

Rather than amoveTo in theonMouseDrag andonMouseRelease, we use amove:

ball.move(point.getX() - lastMouse.getX(),
point.getY() - lastMouse.getY());

15

CSC 252 Problem Solving with Java Spring 2014

Note that we need to retrieve thex andy values from theLocation valuespoint andlastMouse,
so we can compute the difference in each direction.

Themove andmoveTo methods can each be used to move objects on the canvas.move takes into
account the current location of the object and moves an amount relative to that current location.
moveTo does not depend on the current location but instead it moves the object to anabsolute
location.

More Complex Dragging

Let’s use this idea of dragging to implement our most interesting program so far: one that plays a
simple form of basketball.

See Example: Basketball

This example has many of the same constructs we have seen previously. The main thing we
needed to add was a check to see if the ball was in the hoop if it was being dragged and the mouse
is released. Only then does the player get credit for a basket.

Centering Objects
But before we move on, let’s make one minor improvement: we will make the program work for
different sized canvas settings, and we will set a larger font size and make sure our scoreboard text
is centered horizontally on the screen.

See Example: Basketball2

In order to accomplish this, we will first need to see how to determine, in our program, the size of
the canvas. Fortunately, this is readily available from objectdraw with the methods:

canvas.getHeight();
canvas.getWidth();

With this information, we can easily find important points, such as the center of the canvas, or
points a certain percentage of the way down the canvas.

We will use these to place the objects on the screen. This means we can remove or replace some
of our named constants. The constants that remain will indicate the percentage of the way down
from the top of the canvas where we would like to draw the hoop,the scoreboard, and the ball.

Now, when we create each item that makes up the court, we will need to compute its position.
We’ll put the scoreboard aside for a moment and consider firstthe hoop and the ball. For each of
these, we would like to draw them centered at a point half way across the canvas, and at a specified
fraction of the way from the top of the canvas.

However, our object constructors do not specify thecenter of an object, but rather theupper left
corner. This will complicate our calculation just a bit. We need to find the center, then subtract
half of the width of the object to find the x-coordinate, and subtract half of the height of the object
to find the y-coordinate.

16

CSC 252 Problem Solving with Java Spring 2014

Next, we consider the scoreboard. The first enhancement we’ll consider is how to set the size of
the font:

scoreboard.setFontSize(DISPLAY_SIZE);

But let’s think about how we set the position correctly to center our scoreboard. Each time the
text on the scoreboard changes, the width of theText object changes, so we need to retrieve that
width and use it to recenter our object each time the text changes.

We’ve started to use some more complex mathematical expressions. Consider this one:

canvas.getHeight() * BALL_FROM_TOP - BALL_SIZE/2

We have threearithmetic operations here, one multiplication (the*), one subtraction, and one
division (the/).

Recall that Java proceeds based on a predeterminedorder of operations. The rule here is simple:
the multiplicative operations (*, /, and% which is the modulo operator – used to compute a
remainder) are performed first, from left to right. Then the additive operations are performed,
from left to right.

So in the above, Java will first multiplycanvas.getHeight() by BALL FROM TOP, then
divideBALL SIZE by 2, and then subtract the second result from the first.

We can override Java’s default order of operations by parenthesizing subexpressions. For example,
if we wanted to rewrite the expression

canvas.getWidth()/2 - scoreboard.getWidth()/2

To avoid dividing by two twice (essentially factoring out the division by 2), we would have to write

(canvas.getWidth() - scoreboard.getWidth())/2

Doing Math with Colors
Our next example is a simple one, but demonstrates how we can create custom colors using arith-
metic operations.

See Example: ColorfulSunset

Much of the example is similar to previous ones. We’ll just focus on how the color of the sun
changes as it sets.

Each time the mouse moves, in addition to moving the sun down by 1, we reduce the amount
of green used to create theColor of the sun. The color starts out as a bright yellow: red=255,

17

CSC 252 Problem Solving with Java Spring 2014

green=255, blue=0. Then as the sun sets, the intensity of green is reduced, leading to a smooth
change as the color darkens through shades of orange before becoming red.

Of note here is that the example demonstrates a danger of using arithmetic operations to compute
components of aColor: those valuesmust be in the range 0–255 or Java will generate an error.
OncegreenAmount becomes negative, the construction of the newColor will fail and error
messages are generated.

The example has a comment showing how we can add a conditionalto fix this problem in this case.

18

