Computer Science 252

Problem Solving with Java

The College of Saint Rose
Spring 2014

Topic Notes: Java Review and Objectdraw Basics

Event-Driven Programming in Java
A program expresses an algorithm in a form understandabéedoynputer.
That “understandable” form is a program and must be writtesogrogramming language.

There are many, many programming languages, each of wheltdhawn advantages and dis-
advantages. We teach our introductory sequence in oneartiand very popular) language:
Java.

We choose Java because it is in wide use, both academicallydustrially, can be used to write
programs that perform a wide variety of tasks to run on a wigigety of computers. It is also
object oriented, a term we will see in more detail soon.

We will see two main types of programs. Some of our prograntisewecute from beginning to
end to compute a set of outputs (usually text printed to timeescor to files on the computer’s
disks) from a set of inputs (entered at the keyboard or read ttisk files). Some of you have seen
both types of programs, while others are most familiar wigplecations from your CSC 202 class
or other experience.

Our first concern will be to introduce or refresh your memdrga event-driven programs. These
are more interactive and, in our case, graphical. An evawga program responds to actions such
as a mouse click or a key press by performing some specificradtien waits for the next event.

Java was designed with events in mind, and we will take adggnof this. It means we can write
programs that respond to mouse movements and clicks, andilsgthose programs to display
and manipulate some simple graphical objects.

A Simple Program
So we consider this “real” event-driven Java program:
See Example: TouchyWindow

If we run the program, we see that it brings up an empty winddiien | press the mouse button
in the window, a message appears, and when | release the imattise, it disappears.

While that in itself doesn’t seem very exciting, keep in mihdttthe program we are running is
very simple. It fits easily on one screen. Let’s take a lookattext of this program and see what
it all means and why this program does what it does.

CSC 252 Problem Solving with Java Spring 2014

i mport obj ectdraw. *;
i mport java.aw . *;

Thesei nport lines tell Java that our program is going to build upon somgedhat’s already

been written by others. “objectdraw” is a software libragyeloped by the authors of our text that
will allow us to write event-driven graphical programs vattt worrying about some of the gory
details. “java.awt” is part of the standard Java libraryt theelps to display windows on the screen.

These two lines will appear at the top of nearly every progvamwrite this semester. Nearly all
Java programs begin with a seried @fpor t lines to bring in the building blocks they will use.

You have almost certainly imported things like Javdtsanner andRandomclasses in previous
programs.

[*

*

A first Javal/ objectdraw exanpl e.
From Bruce, Danyl uk, Mirtagh, 2007, Chapter 1.

*

*

$1d: objectdraw. tex 2308 2014-01-21 05:50:55Z terescoj $
* [

This next segment is eomment. As you know, everything here between the and thex/ is
ignored by the computer. It is there entirely for our benefihe humans who need to write or
understand the program.

public class TouchyW ndow ext ends W ndowController {

This line gives us (and Java) a lot of information. First, téwen publ i c is telling Java that the
program is “public” — we can run it. We'll see alternativegtiobl i ¢ in some contexts, but every
one of our programs will include a class that starts wghbdl i ¢ cl ass”.

The wordcl ass tells Java that we are about to define a “class”. The reasothéterm will
become more clear soon.

TouchyW ndow is the name of our program (and the name of¢heass that defines the pro-
gram.

ext ends W ndowCont r ol | er means that this neal ass we're defining calledouchyW ndow
is going to build upon (“extend”) another, already existingass, called aW¥ ndowCont rol | er.
Essentially we're saying that we'd like to usaMndowCont ol | er, but we're extending it to
have some new functionality above and beyond, and we’rengdhat newcl ass TouchyW ndow.

TheW ndowCont r ol | er cl ass is defined by the objectdraw library. It is what puts the win-
dow (i.e., the white box) up on the screen. By itself, it neveplys anything in the window. It's
up to us, in our extension, to make use of that box to do somg{siightly) more interesting.

CSC 252 Problem Solving with Java Spring 2014

Lastly, there is a {" character, which tells us that trebass header is complete and now we’re
ready to start to define thebass body.

In our case, the class body contains twethods:

/* This nmethod will execute when soneone clicks on the w ndow.
It will result in a nmessage bei ng displ ayed.
* |
public void onMousePress(Location point) {
new Text ("1’ mtouched", 40, 50, canvas);

}

/* This method w il execute when the nouse button is rel eased.
It will renmove everything drawn in the wi ndow, which in this
case can only be the text nessage di spl ayed by the above.

* [

public void onMouseRel ease(Location point) {

canvas. cl ear();

}

These methods are where the actual instructions are gz fBethod is preceded by a comment
describing what it does. But we’ll look at the methods thenesl

There are two methods definednMousePr ess andonMuseRel ease. In each case, the
name of the method is preceded lpubl i ¢ voi d” and followed by (Locat i on poi nt).
For now, we’ll just say that these methods need to have thesa words and symbols — their
meanings and what else we might put in those positions witiedater. This is all called the
method header .

Following the method header, there is agaifi éharacter, which denotes the start of thethod
body.

In each of our methods, the method body consists of a singéesiatement. lonMousePr ess,

we tell Java that we wantmew piece ofText to be drawn on our screen, and we specify what
text we want, where it should be placed (40 and 50cacedinates — more on this soon), and on
what we should draw it (theanvas, which is objectdraw’s name for the window placed on our
screen by th& ndowCont rol | er).

Specifically, Text is a class, defined by the objectdraw library. When we sagw Text ”,
we are instructing Java to find tled ass definition for Text and construct an object of that
class. The specifics of how to create thaixt object are determined by thparameters listed in
parentheses aftenéw Text ”.

In the onMbuseRel ease method, the statement is an instruction to tl@vas to erase any-
thing that's been drawn on it.

Note that each method and the class definition itself is teaited by a }” character. This ends the
definition of either the method body or class body that wasesleby a{ character.

3

CSC 252 Problem Solving with Java Spring 2014

So we have a complete program — why does it make our progranhebitndoes when we run it?

As their names suggest, the instructions in the bodies afratihods execute in response to mouse
events. Specifically, when someone presses the mouse buttornwindow, theN ndowCont r ol | er
looks for a method namezhMousePr ess and executes the statements in that method. Similarly,
when the mouse is released, the instructionsrivbuseRel ease are executed.

You'll notice that there is norai n method here — the program does not do anything (beyond the
creation of the “canvas” which is handled by fWendowCont r ol | er) until we interact with it
using the mouse.

Other Mouse Event M ethods

As you might guess, there are other “mouse event” methodmblathat we can use to make our
program more responsive. Any class that ends W ndowCont r ol | er may define:

public void onMoused i ck(Locati on point)
public void onMouseEnt er (Locati on point)
public void onMbuseExit (Location point)
public void onMousePress(Location point)
public void onMouseRel ease(Locati on point)
public void onMouseMove(Locati on point)
public void onMouseDr ag(Locati on point)

Finally, there is one additional method we can defineW adowCont r ol | er, calledbegi n.
It looks very similar to the others except that it doesn’tédndlie ‘Locat i on point”. The
begi n method, as its name suggests, executes exactly once: wdproidram begins.

We will soon make use dbegi n and more of the mouse event handlers, but first, we’ll take a
look at what else we can draw besides bits of text.

Graphics Primitives

To fully understand the instructions within the method lesdive have examined, you need to
understand how the system for drawing graphics within a pesgram work.

To place an object on the screen, you include an instrucailecta construction in a method. Each
construction will include:
e The wordnew

e The name of the type of thing you want to draw. Possibilitredude:

FramedRect, Fill edRect
FranedOval, Fill edOval
Text, Line

CSC 252 Problem Solving with Java Spring 2014

¢ alist of extra bits of information calleattual parametersthat determine the size and position
of the object displayed.

Some examples:

new FranedRect (10, 10, 40, 60, canvas);
new Li ne(x1, yl, x2, y2, canvas);

new Text("hello there", x, y, canvas);
new Fil | edOval (100, 100, 30, 60, canvas);

The most important of the parameters included in these narigins are those that specify the
locations and dimensions of objects. They are interpreteddoordinate system in which:

e The basic unit of measurement is one dot on the computepsagigi.e., onepixel).

e The y-coordinate is “upside down” compared to the convenfiom mathematics ., the
bigger the y-coordinate, the closer to the bottom of theestre

e Theorigin (i.e, the point (0,0)) is located in the upper left corner of theggam’s window
(not of the display).

For theFr anedRect , this draws the outline of a rectangle with the upper lefheorat (10, 10),
with a width of 40 and a height of 60. So where is the lower rigirner?

TheLi ne is drawn from(x1, y1) to(x2, y2).
TheText is drawn with its upper left corner &ix, vy).

TheFi | | edOval is drawn within an “imaginary box” with its upper left cornat (100, 100),
width of 30, height of 60.

Looking back at the TouchyWindow example, we can see thatietttas in fact placed at coordi-
nates (40,50) in this coordinate system.

Giving Namesto Objects
Now, let’'s experiment a bit with these different event typad object types.
See Example: ColorEvents

There are two new things in this example. First, we need tevkdmmw to set the color of an object.
This is done with the statement:

set Col or (Col or. xxx) ;

CSC 252 Problem Solving with Java Spring 2014

where ‘kxx” is one of the colors Java knows about.

But just saying et Col or ” isn’t enough — we need to tell Java what object’s color ispaged
to change.

To do this, we need to give the object a name. This is the otierthing in this example. These
names are calledariables.

In order to use a variable to give a name to an object, we need two things:

1. We mustleclarethe variable. In this case, we are declaiingiance variables since they are
defined inside of our class, but outside any method body. Weee other types of variables
later.

private FilledOval oval;
private FranedRect rect;
private Line |ine;

A declaration “introduces” the name to Java, so when we usseat on, it knows what
the name “refers” to. In this case, we're saying that the nama is going to refer to a
Fi | | edOval object.

2. We must associate a value with the variable. This is domeguan instruction called an
assignment statement.

Our example has three assignment statements:

oval = new FilledOval (50, 50, 100, 200, canvas);
rect = new FramedRect (200, 10, 50, 100, canvas);
| ine = new Line(20, 300, 300, 20, canvas);

Note how we construct the object on the right hand side of #sggament operator (the)
and put the name where we wish to remember the object on the lef

Note that we can use any name we want for our variables. Theoghing saying we couldn’t use
the name bval " for our Fr amedRect and ‘r ect ” for our Fi | | edOval . But that would be
confusing. It's always very good practice to use meaningéwrhes (and we’ll take points off your
labs and projects if you don't). It makes the program easieead and to understand.

Recall that there are a few restrictions on the words we cawiitkenames:

¢ Names must start with a letter.
o Names are case sensitive.

e Letters, digits, and underscores may be used in names.

CSC 252 Problem Solving with Java Spring 2014

e Names may not be a word already used by Java ¢likess or ext ends).

Further, Java programmers generally agree upon a satwhg conventions. We will look at these

in more detail as we go on, but for now, we will name all varggblising lowercase letters, except
when we have a name that is made up of multiple words, in whask we capitalize all but the first
word. For example, if we want to give a name for a little redleiy an appropriate name would be
littl eRedCi rcl e. Other variations such ds ttl eRedCi rcl e, LI TTLE.RED.CI RCLE
orLi Tt LeReDcl r O e would be valid names, but would not follow the naming coniantor
variable names.

Now that we have our variables and have assocated objettsheitn, we can use those variables
to tell Java which objects to use for ageet Col or () statements.

rect. set Col or (Col or. bl ue) ;

Just like our mouse event handleeg)(, onMbusePr ess) are methods of ouN ndowCont ol | er
classesset Col or is a method of the classes that define our graphics primifinehis case, the
FranedRect). The above shows how we call a method of a class.

A good way to think about this is that we are “sending a messtagihe object. So we have the
name of thig=r amedRect , and we're saying “heyect , set your color to blue!”.

We will soon see many more methods that will allow us to sensisages to the graphics primitives,
and we’ll write our own methods for the more complex graploiogects we’ll define ourselves.

This next example uses one more method to modify an objeetrilie method.
See Example: SunAndMoon

Everything here is familiar except:
heavenl yBody. nove(0, 1.5);

As you might guess, this message tells the object ndmad enl yBody to move 0 pixels in the
x direction and 1.5 pixels in the y direction (down).

Every time we move the mouse in the window, this code executeging the sun down a bit. But
in theonMouseDr ag method, the circle moves by -1.5 in the y direction, so it nsovp.

Accessing the Mouse L ocation

There is another important situation in which names are tisadfer bits of information your
program needs to work with. When the instructions within aené\handling method such as
onMousePr ess are followed, it is sometimes handy to refer to the coordisathere the mouse
is located when the event occurs. Java makes this possilégtiog you give it a name that should
be associated with this information within the header ofrtiethod.

CSC 252 Problem Solving with Java Spring 2014

In fact, Java doesn't just let you provide such a name — itireguhat you provide one. That is
why we have had to include the textlocat i on poi nt) ” in the header of each mouse event
handling method we have written. This phrase tells Javavwieatvant to be able to use the name
poi nt to refer to the place where the mouse is located. We just teaetally used this ability
yet.

See Example: MouseDroppings
This program places a small red circle on the canvas evegytti® mouse pointer moves.

The only line of interest here is
new Fil | edOval (poi nt, 10, 10, canvas). set Col or (Col or.red);

Two things are different here from previous examples.

First, we have replaced the first two parameters td=ihel edOval construction, which specify
the x and y coordinates of the oval, with a single paramegperi ht ”.

Each time the mouse is moved, before following the instanstiin our method body, Java makes
the name poi nt ” refer to the coordinates of the current mouse position. Wheees the name
poi nt in the construction, it uses the coordinates of the mouskves had typed them in while
writing the program.

When used in this way, the namei nt is called aformal parameter.

Note that the phraseL'bcati on poi nt” looks a lot like a variable declaration. The name
“Locat i on” describes the kind of thing thatoi nt will refer to just as thefect " in

private FranmedRect rect;

described the kind of information that could be associatitl the name ect .

There is nothing special about the worddi nt ” in this situation other than it appears in the
method’s header. Just as we can choose any word we want toruseihstance variable name, we
can choose things other thapdi nt ” as a formal parameter name. If we take the method from
this example and replace all thpdi nt ”s with a different name likefouselLocat i on”, the
program will work the same way.

Remembering infor mation between events

Now that we have seen how to use the mouse location for an,dggstconsider a case where we
need not only theurrent mouse location, but previous mouse location as well.

We will construct a program to draw “Spirographs” — when thause is pressed then dragged, a
series of lines are drawn from the press point to the curoamttion.

See Example: Spirograph

CSC 252 Problem Solving with Java Spring 2014

Note that in this example, the only thing doneanMbusePr ess is to save the value of the
formal parametepoi nt in an instance variablei nesSt art . If we did not do this, the value
of poi nt would be lost.

The instance variable declaration is of typ@cat i on. That makes sensgroi nt isalLocat i on,
so the instance variable we’d use to store its value woulnllzdsal ocat i on.

Then in theonMbuseDr ag method, we use the savedcati oninlinesStart as one end-
point of aLi ne that we draw to the currepioi nt from onMbuseDr ag’s formal parameter.

Now let’s consider a small variation — mnMouseDr ag, rather than simply drawing ki ne,
we’ll also update the savddbcat i on value.

What have we done? We've created a “scribber” drawing program
See Example: Scribble

And now, we’ll look at an example where we create an objectgponse to one event and change
it in response to subsequent events.

See Example: RubberBand

Here, we start by drawing a very small line — from fireessedPoi nt to itself — when the mouse
is pressed. We remember thatne in an instance variable.

Then when the mouse is dragged, we modify thahe to have a new endpoint at the current
mouse location. The result is a “rubber banding” effect.

Using Numbers

So far we have been using numbers only as coordinates fonigedbjects. We’'ll soon be using
them for much more. We'll first look at a very simple examplatttounts the number of times the
mouse has been clicked in the window, and displaysx@t object showing the current count.

See Example: ClickCounter

One of our instance variablespunt , is of typei nt (for “integer”). This is a variable that gives
a name to a number (rather than to a graphical object). Itcatam any integral value from about
negative 2 billion to positive 2 billion. Certainly plentyrfour purposes!

In thebegi n method, we give this variable its initial value of 0. ThenonMoused i ck, we
add one to its value and reassign that result badotont .

This example is also the first one that demonstrates an ianpoi¢ature of good programming
style: the use otonstants. Note the following lines at the top of the class body, justvabour
instance variable:

private static final int DI SPLAY_X
private static final int D SPLAY_Y

150:;
200;

As our programs become more complex, we will be using manyemignvalues. Using many

9

CSC 252 Problem Solving with Java Spring 2014

somewhat arbitrary numeric values in a program can makertigrgam difficult to understand and
modify. We can improve the situation by associating theeshith names so that we are reminded
what the values signify when we see the names used.

Java a mechanism to enable us to use such names effectiwatyl include the wordsst at i c

fi nal ” in a variable’s declaration, this indicates that the vahissigned to it in the declaration
will never change. The most important word herefis hal ”. This means that its value cannot be
changed (possibly by mistake)

Note that not everything can be a constant. Constants magpend on anything created when the
program starts up (except other constants). In particalagnstant may not depend oanvas.
Thus we may never have a constant of t{fpe | edRect , for example.

Conditional Execution

We have considered examples where we needed to remembentaipmj a Locat i on) or a
graphics objectdg., aLi ne) from one event to the next. Now, let’s look at an example wher
we need to remember both a point and a graphics object froneweTd to the next. This program
draws rectangles interactively. When the mouse is predsedpbrdinates are saved as one corner
of a rectangle to be drawn. As the mouse is dragged, a reetédrawn with that point as one
corner, the current point as the other. Finally, when the seds relased, the final rectangle is
drawn.

Most of what we need to do here is similar to previous exambes let's think through how to
approach this.

First, which event handlers will we need? We need to stawidigawhen the mouse is pressed,
need to redraw the rectangle as the mouse is dragged (“tanypoectangles that provide visual
feedback to the user), and draw our final (permanent) relgavigen the mouse is released.

Next, we will consider what information we need in each evandler and how we can get our
hands on that information.

When theonMousePr ess method is invoked, the parameter will give us the coordmafeone
corner of the rectangles we’ll be drawing. We don’t draw aimg yet, but this is information we
will need. So we save it in an instance variable.

When the mouse is dragged, we receive the other bit of infeomateeded to draw the temporary
rectangle: the current mouse position. We can use anothrardbtheFr anedRect constructor,
one that takes twhocat i ons, to draw the appropriate temporary rectangle.

new FranmedRect (firstCorner, point, canvas);

But there’s more. What if this wasn't the first mouse drag evertieén, we need to remove the

previous temporary rectangle before drawing a new one. fieans we had better give a name to
the temporary rectangle in an instance variable. Then, we@aove the previous temporary

rectangle from the canvas before we draw the new one.

10

CSC 252 Problem Solving with Java Spring 2014

t enpRect . r emoveFr onCanvas() ;
tenpRect = new FranedRect (firstCorner, point, canvas);

If we do this, we’ll encounter some problems. The first time d@imMouseDr ag event handler

is called, we will try to remove the object referred to by tlaet enpRect , but that name had
never been assigned a value! Essentially, we are tryingi denessage to nothing, and Java will
respond by printing a long and messy error message. The &irsbpthe message will mention
aNul | Poi nt er Excepti on. That's usually a good indicator that you've made use of agnam
before giving that name a value.

So what do we need to do? We need to make sure we only try to eethevectangle referred to
byt enpRect from the canvas if it has been drawn.

We’ll use two steps to handle this. First, we'll givenpRect aspecial value in thenMousePr ess
event to indicate that it does not refer to any object yetalraJan object name that refers to noth-
ing can be assigned the special vahug | .

Then inonMouseDr ag, we will first check to see if the value dfenpRect is something other
thannul | . Ifitis, that means it refers to an actual rectangle and vmeremove it from the canvas.

We need to ask that question “is the valu¢ ehpRect not equal tahul | 7, which, as you know,
is done in Java using@nditional, often referred to as an “if statement”:

if (tenpRect !'= null) tenpRect.renoveFrontCanvas();
tenpRect = new FranedRect (firstCorner, point, canvas);

We can then complete the program by implementingothkbuseRel ease method. Here, we’ll
need to remove the last temporary rectangle from the cabw®(ly if we know it exists!), then
draw the permanent rectangle using the release point.

See Example: Rectangles

Clicking on Graphical Objects

Armed with the conditional construct, we can add a bit moremregful interaction to our pro-
grams. We can react differently if a mouse event’s locatiaidates that the mouse is over a
particular object.

See Example: NudgeBall

In this example, we have a ball on the canvas. When the mougekisd; we move the ball to the
right if the click point was inside the ball. The key line hésex conditional:

if (ball.contains(point))
bal | . nove(BALL_MOVE, 0);

The cont ai ns method exists for all of our graphical object and tells us thie the given
Locat i on lies within the bounds of that graphical object.

11

CSC 252 Problem Solving with Java Spring 2014

We have now seen two typesainditions used as the test for our conditional statement:
if (tenmpRect !'= null)

and
if (ball.contains(point))

In both cases, we need to decide whether or not to executdateaent immediately following
thei f statement. This is done by evaluating tiamlean expression inside the parens following
the keyword f .

A boolean expression is one that must evaluation to eithere or f al se. If it evaluates to
t r ue, the statement is executed. If it evaluate$ & se, the statement is skipped.

The first is the result of a comparison between a name and gwaswaluenul | . We will see
other comparisons soon.

The second is the result of sending a message to an obje& nEssage returns eitherue or
f al se depending on whether the object contains the given point.

This example also includes more constants.

/'l a constant defining the size of the ball

private static final int BALL_DI AMETER = 50;

/'l a constant defining the initial |ocation of the ball

private static final Location BALL POSI TION = new Location(100, 100);
/1 a constant defining how far to nove the ball when clicked

private static final int BALL MOVE = 10;

In addition toi nt constants like we have seen previously, this example alsahacat i on
constant.

Random Numbers

For our next example, we will introduce some randomnessantgrograms. Specifically, we will
augment the “Spirograph” example to pick a random colom(fi@ set of 4 possible colors) for
each Spirograph we draw.

We begin with the code from the original Spirograph. If we Wblike each Spirograph we draw
to have a randomly-chosen color, we need to make some enhantse

1. We need to be able to choose a color randomly.

2. We need to be able to remember which color we chose so diedfries in the spirograph
are drawn with that color.

12

CSC 252 Problem Solving with Java Spring 2014

Recall that Java’®andomclass provides this capability.

We’ll want to choose a random integer from 0-3 every time tloeise is pressed and a new spiro-
graphis started. So mnMousePr ess, we pick a number and store it in another instance variable
we’ll call col or Nunber .

But a number isn’t a color; we need to translate that numberane of four colors to use. Once
we've picked a color, we will store it in an instance variabs&nedcur r ent Col or , declared as
typeCol or.

if (colorNunmber == 1) {
current Col or = Col or.red;

} else if (colorNunber == 2) {
current Col or = Col or. bl ue;

} else if (colorNunber == 3) {
current Col or = Col or. magent a;

} else {
current Col or = Col or. green;

}

Now, we have assigned the naer r ent Col or to be one of four colors based on a randomly-
chosen value. All that remains is to apply that color to eacé tirawn in theonMouseDr ag
method.

See Example: ColorfulSpirograph

Using Custom Colors

So far we have used only a handful of pre-defined colorsQiideor . r ed, Col or . bl ack, etc..
We can extend beyond this limited color choice by creatingown objects of the clagSol or .

We can create any hue we wish by mixing the appropriate arsairthe primary colors of light:
red, green, and blue. Computer monitors (and televisions, ate typically made of lots of red,
green, and blue light sources.

If we want a purple color to use for our graphics objects, wero& red and blue:
purpl e = new Col or (255, 0, 255);

The three parameters to t@el or constructor are the amount of red, green, and blue to usé&. Eac
is in the range of 0-255, where 0 means don’t use any of that,c®5 means use the maximum
amount.

We will talk more later about creating just the color you havenind. For now, let’s think about
how we can create an entirely random color.

13

CSC 252 Problem Solving with Java Spring 2014

Well, if a Col or object is constructed from three numbers in the range 03#8%an just generate
three random numbers in that range and use them to constnucolor.

See Example: MoreColorfulSpirograph

In this case, we choose a color when the mouse is pressed atidusoto use that same color
for all the lines in a given spirograph. We can make our pnogezen more colorful by choosing
a random color each time the mouse is dragged, thereby makicigi ne in our spirograph a
different color.

See Example: CrazyColorfulSpirograph

Dragging Objects

A very common operation in our graphical programming willalve dragging items around the
screen.

Recall that a “drag” involves pressing the mouse on the oligeloeé dragged, dragging the mouse
(with the button down) and having that object follow the meap®inter, and finally, “dropping”
the object at the position where the mouse is released.

How might we accomplish this?

1. We need to determine if the mouse is pointing at the objéennt is pressed.
2. We need to move the object to follow the mouse while it igdeal.

3. We need to place the object at its new position when the eisugleased.

We’'ll start with a simple example that will allow us to dragiecte around the window:
See Example: UglyDragABall

Consider the three methods involved in performing the draggaton:

public void onMousePress(Location point) {

if (ball.contains(point)) {
/'l note that we’ ve grabbed the ball and renmenber this point
bal | G abbed = true;

In onMousePr ess, we simply check to see if the location of the mouse presssidéthe object
we would like to drag. If so, we setl@ool ean instance variable tor ue.

A bool ean variable is one that can contain only two possible valtesie orf al se.

14

CSC 252 Problem Solving with Java Spring 2014

/'l update | ast Mouse | ocation
public void onMouseDrag(Location point) {

if (ball Gabbed) {
bal | . noveTo(poi nt);

}
}

While the mouse is being dragged, we check to see if the bowke@able ist r ue. If so, we move
the object to follow the mouse.

This also demonstrates a method of our graphics objects we hat yet seen: theoveTo
method. This will take a graphics object that is already @ dhnvas and move its upper left
corner to the giveh.ocat i on.

public void onMouseRel ease(Location point) {

if (ball Grabbed) {
bal | . nroveTo(poi nt);
bal | G abbed = fal se;

}

And now, when the mouse is released, we again check to seehbtiiean i$ r ue. If so, it means
we have been dragging and now need to move the object to itphsdion, and set the boolean
back tof al se so we do not attempt to continue dragging this object (at kewaisl the next time
the mouse is pressed on the object).

But this is not a very satisfying “drag” effect. No matter wa@n the object the mouse is pressed,
the object winds up having its upper left corner follow theus® pointer. So when the object first
starts to move, it appears to “jump”.

Fortunately, this is not very difficult to fix. Consider thispnoved version:
See Example: DragABall

We add one more instance variable related to the draggifepdast Mouse that remembers the
most recent mouskeocat i on for theonMousePr ess oronMouseDr ag event.

What does this do for us? Well, if we move the object to be drddnethedifference between
where the mouse/as and where the mouss, that object will move by exactly the same amount
as the mouse just moved. This is precisely what we need t@waehi more natural “drag” func-
tionality.

Rather than aobveTo in theonMouseDr ag andonMouseRel ease, we use arove:

bal | . move(poi nt.get X() - |astMuse. get X(),
poi nt.getY() - |astMuse.getY());

15

CSC 252 Problem Solving with Java Spring 2014

Note that we need to retrieve tRendy values from thé.ocat i on valuespoi nt andl ast Mouse,
so we can compute the difference in each direction.

Thenove andnoveTo methods can each be used to move objects on the canvas.takes into
account the current location of the object and moves an ahrelative to that current location.
noveTo does not depend on the current location but instead it mdweslject to arabsolute
location.

More Complex Dragging

Let’s use this idea of dragging to implement our most intimggorogram so far: one that plays a
simple form of basketball.

See Example: Basketball

This example has many of the same constructs we have seeoysigy The main thing we
needed to add was a check to see if the ball was in the hoop éfstbeing dragged and the mouse
is released. Only then does the player get credit for a basket

Centering Objects

But before we move on, let's make one minor improvement: wémalke the program work for
different sized canvas settings, and we will set a largetr$ae and make sure our scoreboard text
is centered horizontally on the screen.

See Example: Basketball2

In order to accomplish this, we will first need to see how tedeine, in our program, the size of
the canvas. Fortunately, this is readily available froneotgraw with the methods:

canvas. get Hei ght () ;
canvas. get Wdt h() ;

With this information, we can easily find important pointack as the center of the canvas, or
points a certain percentage of the way down the canvas.

We will use these to place the objects on the screen. This snearcan remove or replace some
of our named constants. The constants that remain will atdithe percentage of the way down
from the top of the canvas where we would like to draw the htlepscoreboard, and the ball.

Now, when we create each item that makes up the court, we edtirto compute its position.
We’'ll put the scoreboard aside for a moment and considertfieshoop and the ball. For each of
these, we would like to draw them centered at a point half veagss the canvas, and at a specified
fraction of the way from the top of the canvas.

However, our object constructors do not specify ¢heter of an object, but rather thepper left
corner. This will complicate our calculation just a bit. We need tadfithe center, then subtract
half of the width of the object to find the x-coordinate, anttsact half of the height of the object
to find the y-coordinate.

16

CSC 252 Problem Solving with Java Spring 2014

Next, we consider the scoreboard. The first enhancemenit cassider is how to set the size of
the font;

scor eboar d. set Font Si ze(DI SPLAY_SI ZE) ;

But let’s think about how we set the position correctly to eerdur scoreboard. Each time the
text on the scoreboard changes, the width offitegt object changes, so we need to retrieve that
width and use it to recenter our object each time the textgbésn

We've started to use some more complex mathematical expnsssConsider this one:
canvas. get Hei ght () * BALL_FROM TOP - BALL_SI ZE/ 2

We have threarithmetic operations here, one multiplication (the), one subtraction, and one
division (the/).

Recall that Java proceeds based on a predeternoiied of operations. The rule here is simple:
the multiplicative operations<(/, and %which is the modulo operator — used to compute a
remainder) are performed first, from left to right. Then tluelitve operations are performed,
from left to right.

So in the above, Java will first multiplganvas. get Hei ght () by BALL_FROM.TOP, then
divide BALL _SI ZE by 2, and then subtract the second result from the first.

We can override Java’s default order of operations by phesmting subexpressions. For example,
if we wanted to rewrite the expression

canvas. getWdth()/2 - scoreboard.getWdth()/2
To avoid dividing by two twice (essentially factoring ougttivision by 2), we would have to write

(canvas. getWdth() - scoreboard.getWdth())/2

Doing Math with Colors

Our next example is a simple one, but demonstrates how wereateccustom colors using arith-
metic operations.

See Example: ColorfulSunset

Much of the example is similar to previous ones. We'll justde on how the color of the sun
changes as it sets.

Each time the mouse moves, in addition to moving the sun doyh, lwe reduce the amount
of green used to create ti@dl or of the sun. The color starts out as a bright yellow: red=255,

17

CSC 252 Problem Solving with Java Spring 2014

green=255, blue=0. Then as the sun sets, the intensity ehgsereduced, leading to a smooth
change as the color darkens through shades of orange befmrening red.

Of note here is that the example demonstrates a danger @f asthmetic operations to compute
components of &ol or : those valuesnust be in the range 0-255 or Java will generate an error.
Oncegr eenAnpbunt becomes negative, the construction of the @b or will fail and error
messages are generated.

The example has a comment showing how we can add a conditfiathis problem in this case.

18

