Computer Science 252

Problem Solving with Java
The College of Saint Rose
Spring 2014

Topic Notes: Programming Without Objectdraw

A common criticism among students who take classes that msd&ef pedagogical tools such as
Objectdraw is that “we’re not learning real Java’. As we wugyp we will see that you have been
doing real Java all along, and even those things that usesti@lvaw are very similar to the things
you’'d need to do to develop similar programs with only Japaisiitives and its standard libraries.

Applications

We have emphasized Java applets — graphical programs —-awzesdplications — keyboard/console
programs — for most of this semester. However, you have sgené@number of Java applications
between earlier courses and some of our examples this saméava applications are those that
we execute using ami n method, and those with which we interact using the keybasoten,
and files, using things lik8canner s,pri ntl n,Pri nt Wi t ers, and others.

One complication you might have noticed arises from the flaat themai n method in a Java
application must be declared with this method signature:

public static void main(String args[])

The qualifierst at i ¢ here means that yoami n method here can only access variables which are
with local or are also declared as at i ¢ and call only methods that have theat i ¢ qualifier.
The reason for this is that our regular (“neh-at i c”) variables — the instance variables — are only
created when an instance of the class is constructedneithh So it wouldn't make much sense
for amai n method to access instance variables, as none have beegdéreat

However, a class with aai n method might still have instance variables and somt i ¢ meth-
ods, but these are only accessible once an instance of tbet blgjs been created witkew.

See Example: Matrix2D

Further, thest at i ¢ keyword can be applied to the kinds of variables we have ba#ing in-
stance variables, but when we do so, they instead bectasevariables.

See Example: StaticStuff

See Example: StaticCount

Java Applets



CSC 252 Problem Solving with Java Spring 2014

We have already seen some examples of GUI-based Java psygradava Applets, which are
not Objectdraw programs. When we have a class tbat €nds W ndowContr ol | er” we
know that a window will be created that contain®raawi ngCanvas that is available to us in
the methods of th&/ ndowCont r ol | er class axanvas. The program starts by excuting the
begi n method if one is specifed.

We later saw how we could add Java Swing GUI components. lifzimathe ATM concurrency
examples, we saw that some programs don’t have a canvasBhalinain differences to point out
here:

Our class ext ends JAppl et ” instead of W ndowCont r ol | er. It starts by executing an

i ni t method instead of hegi n method. There are no “on mouse” methods here, as those are
also specific to th& ndowCont r ol | er class. Here, we interact with our program through the
act i onPer f or med method, which was added as Aat i onLi st ener to the button.

In addition toAct i onLi st ener, we have seeKeyLi st ener andChangelLi st ener.

We can also add listeners for mouse events withMheseLi st ner andvbuselModt i onLi st ener
interfaces. See BDM Section D.2. for more.

Standard Java Graphics

Obviously, there are Java constructs to support drawingagtgcal objects in d Appl et pro-
gram. After all, an Objectdraw program is reallyJ&ppl et with a lot of “training wheels”
attached to shield you from some of the messy details. Nawisethis sheilding more valuable
than in how the graphics shapes are drawn on the canvas.

We can draw all of our standard shapes and much more, but asayaee in BDM Appendix D.4,
there is significantly more code to write to make things happe

See Example: StdGraphicsDemo

Java’'s Thr ead class

Finally, the ATM examples also show that thet i ve(Qbj ect class we used to handle threads is
very similar to Java’s standaiichr ead class. The main differences:
e The class should extenichr ead instead ofAct i veCbj ect .

¢ Instead opause to have the thread wait, we call eep. However, sincasl eep can throw
anl nt errupt edExcept i on, we need a little extra code to catch that.



