
Computer Science 252
Problem Solving with Java
The College of Saint Rose
Spring 2014

Topic Notes: Collections

Our next major topic involves additional common mechanismsfor naming collections of items.

Motivation for Collections
Sometimes we have a lot of very similar data, and we would liketo do similar things to each datum.
For example, suppose we wanted to extend our “Drag2Shirts” example to have 4 shirts instead of
just 2.

See Example: Drag2Shirts

We could go through the program and everywhere we seeredShirt andblueShirt, add 2
more variables and 2 more segments of code to deal with the new2 shirts.

See Example: Drag4Shirts

That was not terribly painful, but a bit tedious and error prone. Now, what if we wanted to create
10, 20, or 100 shirts to be dragged around the canvas. We’d want a better way to name the shirts
as a group.

We could create a recursive data structure to hold ourTShirt objects like we did in some recent
examples. This is a useful approach in many cases, but we willnow consider some other very
common ways to manage collections of objects.

Java and other programming languages provide a number of mechanisms to help here. We will
consider two in Java. First, we will look at a Java class called theArrayList, and later a lower-
level construct common to most modern programming languagecalledarrays. Each allows us to
use one name for an entire collection of objects.

The JavaArrayList Class
Those of you who will go on to take data structures will learn about a variety of ways that collec-
tions of data can be stored that vary in complexity, flexibility, and efficiency. We will consider just
one of those structures here: theArrayList.

ArrayList is a class that implements anabstract data type provided by the standard Java utility
library.

Let’s see how to use them through an example: we will replace the 4 names ofTShirt objects in
the “Drag4Shirts” example with a singleArrayList that holds all 4.

See Example: Drag4ShirtsArrayList



CSC 252 Problem Solving with Java Spring 2014

This program has the same functionality, but the 4 variablesfor theTShirts has been replaced
by a single collection, anArrayList of TShirt objects.

We consider each change that was made to the program to see thebasic usage of anArrayList.

• First, we need to add animport statement to the top of our program.

import java.util.ArrayList;

This allows us to use the class nameArrayList in the rest of the file and Java will know
we mean to use the one in thejava.util package.

• Next, we declare an instance variable for ourArrayList:

private ArrayList<TShirt> shirts;

This looks a little different than any variable declarationwe have seen before. Since an
ArrayList can be used to hold objects of any type, we need to tell Java what type of
objects will be stored in this particularArrayList. In this case, it’sTShirts. So we
place that type inside the< and>. This is called atype parameter.

• Like most Java classes, we need to construct an instance of the class in order use it. This is
done in the first statement of thebegin method:

shirts = new ArrayList<TShirt>();

This is much like other constructions we have seen, but we again need to include the type
parameter so Java will give us anArrayList that is set up to hold a collection ofTShirt
objects.

• TheTShirt instances are then created, and we need to insert each into theArrayList.
This is done with theadd method:

shirts.add(shirt);

This will take theTShirt namedshirt and add it to the first available slot in theArrayList
namedshirts.

Note that in this case, we are not requesting any specific location within theArrayList
for the shirt. We will later see that we can be more specific here.

Note also that we as users of theArrayList do not know (though when you take data
structures, you’ll have a pretty good idea) of what’s going on inside theArrayList to add
the shirt. We just know that it knows how to do it.

When we’re done withbegin, theArrayList contains references to 4TShirt objects.

2



CSC 252 Problem Solving with Java Spring 2014

• In theonMousePress andonMouseExit methods, we need to access theTShirt ob-
jects within theArrayList. We do this with theget method:

TShirt shirt = shirts.get(shirtNum);

Here,shirtNum is a loop index variable that will range from 0 to one less thanthe number
of items in theArrayList. We know in this case that there are 4 items, but we can get that
information from theArrayList itself using thesize method, as done in thefor loops:

for (int shirtNum = 0; shirtNum < shirts.size(); shirtNum++)

What we see here is that theArrayList has assigned a number, often called anindex,
to eachTShirt we added to theArrayList, and we can pass that number to theget
method to get back a specificTShirt from theArrayList.

It turns out that the first item we add is given index 0, the nextis given index 1, and so on. If
we later wanted to get at the first one, we could say:

shirts.get(0);

but in many cases (like this one), we will access the items within a collection inside a loop,
passing in a loop index to theget method.

This is our first example of asearch operation on a collection – we are looking through each
object in the collection to find one that contains theLocation. More precisely, this is a
linear search and we will say more about this later.

One of the great things about using a construct like anArrayList is that we can extend our
programs to keep track of a much larger number of objects. If we want to have 10TShirts on the
canvas, we would definitely want to use a collection like anArrayList to keep track of them.

See Example: Drag10Shirts

Here, we also place the creation of theTShirts into a loop, but just line them up in a row for
simplicity. If we wanted them to be organized into rows or to use a fixed set of colors, we would
need to use a more complicated loop in thebegin method. (And we will do just that later.)

If we wanted to create 20 or 50 or 100Tshirts, we could do so by changing the loop in the
begin method and the remainder of the code does not need to change.

ArrayLists in Custom Objects

One of the challenges we have seen with constructing custom objects with any level of complexity
is that we need to have names for all of the graphical objects we construct. When the object
includes large numbers of items, ideally created within a loop, anArrayListwill come in handy
to help keep track of them.

3



CSC 252 Problem Solving with Java Spring 2014

First, we look at a program that doesn’t useArrayLists:

See Example: DrawRoads

This program draws little segments of roads when we click themouse. Nothing is new here – we
could have written this a while ago.

But now suppose we want to be able to drag one of these around.

We need to have names for all of the components of the road segment so we can do things like
move it and check for containment of a point.

See Example: DragRoads

The enhancements to theWindowController class are all very familiar.

It’s in theRoadSegment class that we make use of anArrayList to hold the center stripes of
our road segment. Notice the same steps: declare a variable with anArrayList type that can
hold objects of the appropriate type, construct it withnew, thenadd entries with the appropriate
types of objects.

In the constructor, we do the construction of theArrayList, then create the actual stripes.

In themove method, we loop through the stripes, moving each one.

This is nice, but perhaps we want to combine this functionality with that of the program where
we could drag around any of 10 shirts. Let’s use anArrayList to keep track ofall of the road
segments we’ve created, so we can dragany segment, not just the most recently drawn one.

See Example: DragAllRoads

Here, in addition to having anArrayList to keep track of the components of one of the road
segments, we keep anArrayList of RoadSegment objects in theWindowController
class.

Removing from anArrayList

We can augment the last example to remove each road segment from the canvas and from the
ArrayList. A road segment will be removed if it is being dragged when themouse leaves the
window.

See Example: DragAllRoadsRemove

The new functionality is in theonMouseExit method of theDragAllRoadsRemove class.
If the dragging flag is true when the mouse leaves the window, the currently-dragged segment
selectedSegment) should be removed. We first remove it from the canvas, then remove it from
theArrayList. We also setdragging back to false, since the object we were just dragging no
longer exists.

First, we will look at the removal from the list, which is donewith theArrayList’s remove
method. We pass as a parameter the element we want to remove, and if it is an element of the
list, it is removed. It is important to note that when we remove an element from anArrayList

4



CSC 252 Problem Solving with Java Spring 2014

with remove, any subsequent entries will be “moved up”. That is, if a listcontains 5 elements
(in positions numbered 0 through 4) and we remove the elementat position 2, theArrayList
implementation ofremove will shift the element that was in position 3 into position 2,and the
one that was in position 4 into position 3. This means we can still use ourfor loop over the
numbers from 0 tosize()-1 to visit all of our entries. In other words,remove does not leave
a “hole” at the index from which the element was removed.

The newremoveFromCanvas method is mostly like the ones we have seen in previous exam-
ples: to remove the custom object, we remove each of its components. The difference here is that
we need to loop through theArrayList, get and thenremove each element. We also should
remove the individualFilledRects from theArrayList, which we do all at once with the
clear method.

We can also remove elements from anArrayList by index rather than value. We will see
examples of this soon.

Other ArrayList methods

The examples above demonstrated just a few of the capabilities of theArrayList class: con-
struction,add, get, size, remove, andclear.

The full documentation for theArrayList can be found athttp://docs.oracle.com/
javase/6/docs/api/java/util/ArrayList.html

Here are a couple of additional methods, some of which will come up in later examples.

• contains – determine if a given object is in the list

• indexOf – search for first occurrence of a given object in the list and return its index

• set – replace the contents at an index with a new element

A few more examples to bring some of this together:

See Example: MovingFlags

See Example: PongBricks

ArrayLists of Primitive Types

Java places a significant restriction on the use of primitivetypes as the type parameters for generic
data structures such as theArrayList. The following would not be valid Java:

ArrayList<int> a = new ArrayList<int>();

The type in the<> must be an object type. Fortunately, Java provides object types that correspond
to each primitive type. AnInteger object is able to store a singleint value, aDouble value
is able to store a singledouble value, etc. So the declaration and construction above wouldneed
to be:

5



CSC 252 Problem Solving with Java Spring 2014

ArrayList<Integer> a = new ArrayList<Integer>();

In older versions of Java, programmers would need to be careful to convert back and forth between
values of the primitive types and their object encapsulators. To construct anInteger from an
int i, one would need to do so explicitly:

a.add(new Integer(i));

And to retrieve theint value from anInteger, one would also do so explicitly:

a.get(pos).intValue();

However, recent versions of Java automatically convert between the primitive types and their ob-
ject encapsulating classes. This is calledautoboxing when converting from primitive to “boxed”
encapsulating classes, andautounboxing when going back the other way.

However, the effective programmer should always keep in mind that these conversions are occur-
ring, as there is a computational cost to each.

Another Example

Suppose we have anArrayList of Integer values, and someone (by a mechanism which is not
our concern) has asked us to write a method that will find the largest value in theArrayList.
The following method will achieve this (we assume at least one element in theArrayList):

private static int findMax(ArrayList<Integer> a) {

int max = a.get(0);
for (int i=1; i<a.size(); i++) {

int val = a.get(i);
if (val > max) max = val;

}
return max;

}

The “for-each” Loop

We have seen that a common task with a collection such as anArrayList is to iterate over its
contents. That is, “visit” every element in the list exactlyonce to do something to it.

It is often the case (and was in many of the examples here) thatthe specific index of an entry
in anArrayList is not important as we are iterating over its contents. For example, consider
the See Example: DragAllRoadsRemove example. It doesn’t actually matter the order in which

6



CSC 252 Problem Solving with Java Spring 2014

we process the items in theArrayLists in themove andremoveFromCanvas methods of
RoadSegment or in theonMousePress method ofDragAllRoadsRemove.

In these cases, the countingfor loops can be replaced with a related Java construct often called
the “for-each” loop.

If we have anArrayList of objects of some typeT and we wish to loop over all entries in the
loop, we can replace a counting loop:

ArrayList<T> a = new ArrayList<T>();

...

for (int i = 0; i < a.size(); i++) {
T item = a.get(i);
// do something with item

}

with a for-each loop:

ArrayList<T> a = new ArrayList<T>();

...

for (T item : a) {
// do something with item

}

This construct will loop enough times so that the variableitem will be assigned to each entry in
a exactly once through the body of the loop.

See Example: DragAllRoadsForeach

The for-each construct is not always appropriate, however.For example, in thefindMax method
above, it is more convenient to be able to get the item at position 0 as the initial “max” and then
loop over the entries from positions 1 and up to check for larger values.

As you learn more Java, you will see a number of other data structures that can be used with the
for-each loop construct.

Java Arrays
TheArrayList is a Java class, provided as a standard utility with every Java environment. But
it is built on top of a more fundamental programming languageconstruct called anarray.

7



CSC 252 Problem Solving with Java Spring 2014

In mathematics, we can refer to large groups of numbers (for example) by attaching subscripts to
names. We can talk about numbersn1, n2,... An array lets us do the same thing with computer
languages.

Suppose we wish to have a group of elements all of which have typeThingAMaJig and we wish
to call the groupthings. Then we write the declaration ofthings as

ThingAMaJig[] things;

The only difference between this and the declaration of a single item of typeThingAMaJig is
the occurrence of “[ ]” after the type.

Like all other objects, a group of elements needs to be created:

things = new ThingAMaJig[25];

Again, notice the square brackets. The number in parentheses (25) indicates the number of slots to
create, each of which can hold one of the elements. We can now refer to individual elements using
subscripts. However, in programming languages we cannot easily set the subscripts in a smaller
font placed slightly lower than regular type. As a result we use the ubiquitous “[ ]” to indicate a
subscript. If, as above, we definethings to have 25 elements, they may be referred to as:

things[0], things[1], ..., things[24]

We start numbering the subscripts at0, and hence the last subscript is one smaller than the total
number of elements. Thus in the example above the subscriptsgo from 0 to 24.

One warning: When we initialize an array as above, we only create slots for all of the elements,
we do not necessarily fill the slots with elements. Actually,the default values of the elements of
the array are the same as for instance variables of the same type. If ThingAMaJig is an object
type, then the initial values of all elements isnull, while if it is int, then the initial values will
all be0. Thus you will want to be careful to put the appropriate values in the array before using
them (especially before sending message to them! – that’s aNullPointerException waiting
to happen).

In many ways, and array works like anArrayList, but we will see several differences.

Armed with this new construct, let’s revisit the shirt dragging program to use arrays.

See Example: Drag10ShirtsArray

In this code, we we have a single array namedshirts. This array is declared as an instance
variable, constructed at the start of thebegin method, and given values (references to actual
TShirts) just after.

Then in theonMousePress method, we loop through all of the array entries (as we did previ-
ously with anArrayList) to determine which, if any, has been pressed. Finally, inonMouseExit,
we tell all of the shirts to move back to their starting positions.

8



CSC 252 Problem Solving with Java Spring 2014

Let’s see how this differs from theArrayList version.

• Our instance variable declaration looks a bit different.

• When we construct the array in thebegin method, we need to tell it how many elements
the array will hold (in this case, 10). With theArrayList, we construct a list and we can
add as many things to it as we want. The array can only ever holdthe number of elements
we provided when we constructed it.

• When we add items to the array, we need to specify the index explicitly. There is no way to
say “just add it to the end” the way we do withArrayLists.

• When we access array elements, we use the bracket notation in much the same way we use
theget method of theArrayList.

In this example, we have used an array to keep track of a collection of objects on the canvas. We can
also use an array to keep track of the components of a custom object as we did withArrayLists.

An enhancement to this example that shows some of the benefitsof arrays, we draw the t-shirts in
two rows and use a fixed array of colors for the shirts instead of random colors.

See Example: Drag10ShirtsNicer

A few things to notice here:

• We have an array ofColors initialized to 10 pre-defined color names that we’ll use forour
10 t-shirts.

• The construction of the t-shirts takes place in a nested loopto make it easier to organize them
into 2 rows of 5 shirts each.

Our next enhancement to this example is to draw and drag around 20 shirts, now in 4 rows of 5.

See Example: Drag20Shirts

Most of the program works correctly just by changing the value of the constantNUM ROWS (hooray
for constants!). But...the array of colors is not large enough.

We account for this by reusing the colors once we’ve run out. This is accomplished with some
modulo arithmetic:

shirts[shirtNum].setColor(shirtColors[shirtNum % shirtColors.length]);

Another Example

See Example: DragStudentsS14

9



CSC 252 Problem Solving with Java Spring 2014

What you’ve been waiting for: being the stars of a program.

This is another “drag objects around” example, but this timethe objects being dragged are your
pictures.

In this example, we place the objects randomly on the canvas,but take some care to make sure they
do not overlap at all. Notice the helper methodoverlapsAny that helps ensure this.

Any image being dragged is also made larger while it’s being dragged.

Other than that, it’s similar to dragging 10 shirts.

Arrays of Non-graphical Types

There is no reason to limit our usage of arrays to graphical object types.

The following is an example of a Java application (rather than an Applet – it starts with amain
method instead ofbegin and has no graphics canvas) that uses arrays ofString, double, and
int.

See Example: GradeRangeCounter

There are a few items here we haven’t used much this semester (theScanner) but which you
have seen before. There are also examples of arrays declaredand initialized asfinal, and an
example of an array ofint allocated withnew.

Inserting and Removing with Arrays

We have already seen that there is quite a bit to keep track of when using arrays, especially when
objects are being added. We need to manage both the size of thearray and the number of items
it contains. If it fills, we either need to make sure we do not attempt to add another element, or
reconstruct the array with a larger size.

As a wrapup of our initial discussion of arrays, let’s consider two more situations and how we need
to deal with them: adding a new item in the middle of an array, and removing an item from the
end.

For these examples, we will not use graphical objects, just numbers. Arrays can store numbers just
as well as they can store references to objects.

Suppose we have an array ofint large enough to hold 20 numbers.

The array would be declared as an instance variable:

private int[] a;

along with another instance variable indicating the numberof ints currently stored ina:

private int count;

and constructed and initialized:

10



CSC 252 Problem Solving with Java Spring 2014

a = new int[20];
count = 0;

At some point in the program,count contains 10, meaning that elements 0 through 9 ofa contain
meaningful values.

Now, suppose we want to add a new item to the array. So far, we have done something like this:

a[count] = 17;
count++;

This will put a 17 into element 10, and increment thecount to 11.

But suppose that instead, we want to put the 17 into element 5, and without overwriting any of the
data currently in the array. Perhaps the array is maintaining the numbers in order from smallest to
largest.

In this case, we’d first need to “move up” all of the elements inpositions 5 through 9 to instead be
in positions 6 through 10, add the 17 to position 5, and then incrementcount.

If the variableinsertAt contains the position at which we wish to add a new value, and that new
value is in the variableval:

for (int i=count; i>insertAt; i--) {
a[i] = a[i-1]

}
a[insertAt] = val;
count++;

Now, suppose we would like to remove a value in the middle. Instead of “moving up” values to
make space, we need to “move down” the values to fill in the holethat would be left by removing
the value.

If the variableremoveAt contains the index of the value to be removed:

for (int i=removeAt+1; i<count; i++) {
a[i-1] = a[i];

}
count--;

The loop is only necessary if we wish to maintain relative order among the remaining items in the
array. If that is not important (as is often the case with our graphical objects), we might simply
write:

a[removeAt] = a[count-1];
count--;

11



CSC 252 Problem Solving with Java Spring 2014

In circumstances where we are likely to insert or remove intothe middle of an array during its life-
time, it usually makes sense to take advantage of the higher-level functionality of theArrayList.

Array and ArrayList Summary
The following list summarizes the key differences and similarities between arrays andArrayLists.

Declaration To declare an array of elements of some typeT:

T[] ar;

whereT can be any type, including primitive types or Object types.

And to declare anArrayList that can hold items of typeT:

ArrayList<T> al;

whereT must be an object type. If we want to store a primitive type, wemust use Java’s
corresponding object wrappers (e.g.,Integer when we want to store items of typeint).

Construction To construct (allocate space for) our array ofn elements of typeT:

ar = new T[n];

Once constructed, the array will always have space forn elements of typeT – if we want a
larger or smaller array, we would have to construct a new one.

The array constructed will have the default value for the datatype stored in each entry. For
object types, all entries begin asnull. For primitive number types, they begin as 0. For
boolean arrays, they begin asfalse.

To construct anArrayList:

al = new ArrayList<T>();

This ArrayList initially does not contain any values. Its size will be determined by the
number of elements we add to it.

Adding an Element To add an element to an array, we have to specify the position at which we
wish to add the new element:

ar[i] = t;

12



CSC 252 Problem Solving with Java Spring 2014

This will place the itemt at positioni into our array.i must be in the range 0 ton-1 if we
constructed our array to haven entries. If there was already some data stored in positioni,
it will be overwritten witht.

If we want to add the item to the “end” of the array, that is, thefirst unoccupied slot in the
array, we will need an additional variable to keep track of the number of currently-occupied
slots. If this is calledaSize, and we have been careful to make sure theaSize elements
in the array occupy slots 0 throughaSize-1, we can add the element with:

ar[aSize] = t;
aSize++;

With anArrayList, theadd method takes care of this:

al.add(t);

Retrieving an Element To get an item from an array, we use the same notation. To put the value
from positioni in the array into some variablet:

t = ar[i];

Whereas with theArrayList, we need to call a method:

t = al.get(i);

Visiting All Elements To loop over all elements in the array:

for (int i=0; i<aSize; i++) {
t = ar[i];
// do something with t

}

and anArrayList;

for (int i=0; i<al.size(); i++) {
t = al.get(i);
// do something with t

}

In both cases, we can also use the for-each loop.

13



CSC 252 Problem Solving with Java Spring 2014

Two-Dimensional Arrays
We can create arrays to hold objects of any type, either basicdata types likeint anddouble, or
instances of objects such asImage andFilledOval or TShirt.

Nothing stops us from defining arrays of arrays. To declare anarray, each of whose elements is an
array ofint:

int[][] twoDArray;

While it is normally written without parentheses, we can think of the above declaration as defining
twoDArray as having type(int []) []. Thus each element oftwoDArray is an array of
ints.

Despite the fact that Java will treat this as an array of arrays, we usually think about this as a two-
dimensional array, with the elements arranged in a two-dimensional table so thattwoDArray[i][j]
can be seen as the element in theith row andjth column. For example here is the layout for a two-
dimensional arraya with 6 rows (numbered 0 to 5) and 4 columns:

0 1 2 3

0 a[0][0] a[0][1] a[0][2] a[0][3]
1 a[1][0] a[1][1] a[1][2] a[1][3]
2 a[2][0] a[2][1] a[2][2] a[2][3]
3 a[3][0] a[3][1] a[3][2] a[3][3]
4 a[4][0] a[4][1] a[4][2] a[4][3]
5 a[5][0] a[5][1] a[5][2] a[5][3]

Viewed in this way, our two-dimensional array is a grid, muchlike a map or a spreadsheet. This is
a natural way to store things like tables of data or matrices.

We access elements of two-dimensional arrays in a manner similar to that used for one dimensional
arrays, except that we must provide both the row and column toaccess an element, giving the row
number first.

We create a two-dimensional array by providing the number ofrows and columns. Thus we can
create the two-dimensional array above by writing:

int[][] a = new int[6][4];

(Though as good programmers, you would define constants for the number of rows and the number
of columns.)

A nestedfor loop is the most common way to access or update the elements ofa two-dimensional
array. One loop walks through the rows and the other walks through the columns. For example, if
we wanted to assign a unique number to each cell of our two-dimensional array, we could do the
following:

14



CSC 252 Problem Solving with Java Spring 2014

for (int row = 0; row < 6; row++) {
for (int col = 0; col < 4; col++) {

a[row][col] = 4*row + col + 1;
}

}

This assigns the numbers 1 through 24 to the elements of arraya. The array is filled by assigning
values to the elements in the first row, then the second row, etc. and results in:

1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16
17 18 19 20
21 22 23 24

And if we wanted to print the above, we can write a loop:

for (int row = 0; row < 6; row++) {
for (int col = 0; col < 4; col++) {

System.out.print(a[row][col] + " ");
}
System.out.println();

}

You could modify the above to be slightly more interesting bycomputing a multiplication table.

We could just as well process all the elements of column 0 first, then all of column 1, etc., by
swapping the order of our loops:

for (int col = 0; col < 4; col++)
for (int row = 0; row < 6; row++)

...

For the most part, it doesn’t matter which order you choose, though for large arrays it is generally
a good idea to traverse the array in the same order that your programming language will store
the values in memory. For Java (and C, C++), the data is stored byrows, known asrow major
order. However, an two-dimensional array in FORTRAN is stored in column major order. You
will almost certainly see this again if you go on and take courses like Computer Organization or
Operating Systems.

Let’s look at an example that makes use of a small (3× 3) two-dimensional array: a tic-tac-toe
game.

15



CSC 252 Problem Solving with Java Spring 2014

See Example: TicTacToe

Most of the program is pretty straightforward, so we’ll focus on the use of the two-dimensional
arrays and discuss some of the private helper methods that make the code simpler, especially when
checking for winning boards.

The array that represents the board is a two-dimensional array ofint calledmarks. Each entry
will contain one of three values that will indicate if the cell is empty (0), contains an X (1) or
contains an O (2). Named constants make the code involving these numbers easier to understand.

Several private helper methods are provided to draw the board and the X’s and O’s. Look a bit
at theonMousePress method, where the game is played. When the mouse is pressed andit is
determined which (if any) of the 9 spaces contain the press point, we check to see if the space is
occupied. If not, the array entry is set and the appropriate mark is drawn on the screen.

From there, thecheckGameWon method is called to see if this last move led to a win. If not,
we call thecheckAllFilled method to see if all squares are now occupied, meaning the game
ends in a tie.

A hopefully more interesting use of two-dimensional arraysis to manage the bricks in a breakout
game.

See Example: Breakout

This is a greatly-enhanced version of our last pong game, where there are now a series of bricks
that get removed as the ball bounces off one of them.

The most relevant to the current discussion is the two-dimensional array in theBrickCollection
class. For the game as written, the bricks could be stored in aone-dimensional array or even an
ArrayList. However, by storing them in a two-dimensional array, we canhave the additional
information about the positions if we wanted to enhance the game to have different point values
based on position, for example.

Two-Dimensional Matrices

A very common use of two-dimensional arrays is the representation of matrices. We will look at
an example of a class that represents two-dimensional square matrices and provides some basic
operations on them.

See Example: Matrix2D

The class is capable of holding a square matrix ofdouble values of any positive dimension.

Comments within the example explain much of what is happening. Note in particular the use of the
two-dimensional array as an instance variable which storesthe matrix entries, the use of exceptions
to handle error conditions, and themain method that tests out the methods of the class.

16


