
Computer Science 252
Problem Solving with Java
The College of Saint Rose

Fall 2015

Topic Notes: Active Objects

Repetition

People find repetition boring. Fortunately, computers don’t feel this way. This is fortunate because

repetition is the only way we can exploit the full power of a computer. As we discussed in the first

class, part of the computer’s power comes from the fact that it can follow the instructions stored

within its memory rapidly without waiting for a human being to press a button or flip a switch.

In all of the examples we have considered so far, the sequences of instructions performed when a

mouse event occurs are quite short and then the computer has to wait for us again. The computer

works for a fraction of a second then waits. We could get the computer to do more work in response

to our mouse events by writing methods with thousands or millions of instructions, but this would

be painful.

But we can get the computer to execute thousands or millions of instructions without writing thou-

sands or millions of instructions ourselves: we can have the computer execute the same instructions

over and over and over again.

At first, this may seem like a boring and inefficient use of the computer. In fact, when in comes to

following instructions, doing the same thing over and over again can be very interesting. Think of

the scribble program or the Spirograph program. Each time we drag the mouse in these programs,

the computer “does the same thing” in the sense that it executes the same instructions — the body

of onMouseDrag. Each time these instructions are executed, however, the computer actually

does something different because the meaning of at least one of the variables referenced in the

instructions, point, has changed.

Consider this example, where we get some “interesting” behavior through repeating the same

instructions without depending on changes in the mouse position.

See Example: RailroadClick

Here, we draw a railroad track, one railroad tie at a time, by clicking the mouse.

Each time the mouse is clicked, the onMouseClick method does the same things. It creates

a FilledRect that looks a bit like a railroad tie and it increases the value associated with the

variable tiePosition. Because tiePosition is increased with each click, the next click

draws its tie a little farther over in the screen. To prevent the program from wasting time by

drawing ties no one will ever see, an if statement is included that skips the creation of new ties

once tiePosition gets large enough.

It is painful to have to click repeatedly to get the ties drawn. Instead we would like the computer to

CSC 252 Problem Solving with Java Fall 2015

continue drawing ties while they are still on the screen. As you know Java provides loop constructs:

the while, do..while and for statements, to perform repeated actions.

Using this construct, we can draw all of our railroad ties in the begin method.

See Example: Railroad

As in this example, the condition controlling the while loop will usually involve the variable

that’s changing. If nothing in the condition changes, then the loop will never terminate. Such

a condition is called an infinite loop. We avoid this, in general, by ensuring that our loops have

a precise stopping condition. While we might be able to look at an algorithm and say “hey, we

should stop now”, Java will not (and in fact cannot, in general) determine if a loop will not stop.

An example using a for loop to draw lots of ovals each time someone clicks:

See Example: RandomOvalsOnClick

We can also use loops to construct various patterns. We will practice a few of those in class.

See Example: DiagonalOvals

Memory Diagrams

Before we move on to active objects and especially on to recursion, it is appropriate to examine a

bit more closely how variables are allocated in our programs. We have drawn these in class several

times, and they become more essential to being able to understand how our programs work as we

have more and more objects interacting with each other.

We will go over an example in detail in class, but the following is a set of guidelines that will

hopefully aid in your construction of memory diagrams, and as a result, a better understanding

of how and why our programs behave as they do. These instructions assume we are running an

Objectdraw program launched through a class that extends WindowController.

When we start the program, here is what happens and how we represent it in a memory diagram.

• Java allocates a chunk of memory large enough to hold all of the WindowController

class’ instance variables, and executes any initialization that happens on the same line as

the declarations. This includes the creation of the canvas and the instance variable canvas

that comes from WindowController. For the memory diagram, we will draw a box

labeled with the class name, which has space for each instance variable, plus the canvas. Any

variables not explicitly initialized on their declaration line are initialized to null for object

references, 0 for integer types, 0.0 for floating point types, and false for booleans.

This memory will remain allocated for as long as the program is running.

• The begin method is invoked. As is the case for all non-static method invocations, Java

will allocate a chunk of memory large enough to hold all parameters and local variables, plus

the implicit “this” reference which directs the method to the object on which it is called,

so it can locate the correct set of instance variables. This memory will remain allocated only

until the begin method returns.

2

CSC 252 Problem Solving with Java Fall 2015

Java also needs to allocate memory and execute code when a new object is constructed.

• When an object is constructed (“new XXXXX”), a chunk of memory is allocated which is

large enough to hold all instance variables of the object, and executes any initialization that

happens on the same line as the declarations. For the memory diagram, we will draw a box

labeled with the class name, which has space for each instance variable. Any variables not

explicitly initialized on their declaration line are initialized to null for object references,

0 for integer types, 0.0 for floating point types, and false for booleans. This memory

will remain allocated for as long as any part of the program has a reference to this object.

• The object’s constructor is invoked. Java will allocate a chunk of memory large enough to

hold all parameters and local variables, plus the implicit “this” reference which directs

the method to the object on which it is called, so it can locate the correct set of instance

variables. This memory will remain allocated only until this invocation of the constructor

returns.

Memory is also affected when a non-static method is called. This includes our code making a

call like

someObj.someMethod(someParam)

or the Objectdraw system calling one of the mouse event handlers on our behalf.

• When the method is called, a chunk of memory is allocated which is large enough to hold

all parameters and local variables of the method, plus the implicit “this” reference which

directs the method to the object on which it is called, so it can locate the correct set of

instance variables. Note that “this” is essentially another parameter, which is initialized to

the value before the “.” in the method call. This memory will remain allocated only until

the method returns.

When a static method is called, the same procedures apply, except no “this” reference is set,

so the method has no access to instance variables of the class where it is defined. It does have

access to class variables, which are those variables that themselves are declared with the static

qualifier, and which are shared among all instances of the class.

Active Objects

We have now seen how to get one set of commands to be executed repeatedly. But there certainly

are programs that have different things happening simultaneously. That is our next goal.

All of the classes we have defined so far have described “passive” objects. They only do things

when they are told to (i.e., because someone invokes one of their methods).

We can also create active objects in Java. They can contain instructions (in a special method called

run) that run even when the user doesn’t do anything with the mouse.

3

CSC 252 Problem Solving with Java Fall 2015

If you put a loop that goes on for a long time in an onMouse... method, the WindowController

can’t respond well to additional events because it is busy in the mouse-handling method. Instead,

we will put such loops in the “run” methods of ActiveObjects.

To create an ActiveObject one must:

1. define a class that “extends ActiveObject”

2. define its constructor and say “start()” at the end.

3. define a “public void run()” method.

The class ActiveObject is part of the objectdraw library. It includes a number of instance

variables and methods that are used to keep track of objects which can execute in parallel with each

other. The method start does some housekeeping which results in the creation of a new thread

of control (or just thread), which then begins running the run method. Thus evaluating start

(or equivalently, this.start()), eventually leads to the creation of a thread that executes the

run method. When the method terminates, the thread dies, and the object is no longer “active.”

Our first example is of falling balls in a window.

See Example: FallingBalls

Consider the ActiveObject in this program - the FallingBall. We see that it does all

the things we said an ActiveObject is supposed to do. Its class header tells Java that this

class extends ActiveObject. We have several constants and an instance variable to hold the

FilledOval that will be the actual ball.

The constructor includes the same functionality as things like the Tshirt examples - it constructs

the objects that make up an instance of this class (in this case, just a FilledOval). The difference

is that it must end with a start() statement.

The runmethod contains a simple while loop that defines the ongoing “activity” of a FallingBall.

The condition ball.getY() < yMax is true as long as the ball is on the screen. Notice

that the body of the while loop contains the statement pause(DELAY TIME). When this is

executed, the thread pauses execution for DELAY TIME milliseconds (thousandths of a second)

before going around to the next iteration of the loop to move the ball by another Y SPEED pixels

down the screen. If the pause statement were not in the loop the animation would take place so

fast that we would not be able to see it. For each of our applications we will play with the value of

DELAY TIME until we get a speed of animation that looks the best. For this particular application,

we chose a value of 33. If the value of DELAY TIME were 66, the ball would fall half as fast

(there would be twice as much delay between movements), while a value of 11 would have the ball

falling 3 times as fast.

There is another, more technical, reason for including a pause statement in the loop. Many com-

puters only have a single processor. Thus if two threads are active, they are both being run by the

same processor. In order to make it look as through both are being run simultaneously, they take

turns. Different computer operating systems have different ways of taking turns. Some automati-

cally trade off after a certain time interval (usually every few milliseconds), while others wait for

4

CSC 252 Problem Solving with Java Fall 2015

one thread to pause before releasing control to the other thread. We will always include pauses in

every loop in the run method of an ActiveObject in order to ensure that they alternate turns

fairly.

Once the ball has finished falling off the screen there is no need keep it around. We call removeFromCanvas

to remove it. The run method then terminates, “deactivating” our FallingBall.

Notice that we can create more than one ball at a time. How does this work? Well, each time we

press the mouse, a brand new instance of a FallingBall is created. That instance has its own

copy of each instance variable: a ball and a yMax.

Different “Activities”

There is no rule stating that an ActiveObject must involve a constant motion of an object

or objects. In fact, we have an incredible amount of flexibility in what can be controlled in an

ActiveObject. Consider this example:

See Example: VanishingScribble

This program looks a lot like our scribble program from earlier. However, the objects that look like

regular Lines that we draw in this one are really ActiveObjects that will cause the Lines to

go away after a period of time.

When we press the mouse, we decide if we are going to draw the next scribble with FallingLine

objects or FadingLine objects. Each is an extension of ActiveObject which will cause the

line to disappear at some point.

First, let’s look at the FallingLine. In many ways, it resembles the FallingBall object. We

draw something on the canvas, activate it, and the run method moves it until it leaves the canvas,

at which point we remove it.

The difference here is that we’ve added some acceleration. The Line object controlled by the

FallingLine waits a bit, then slowly starts to move the Line down the screen. To simulate

acceleration due to gravity, we have the speed increase by 10% each time we move the line a bit.

Once both endpoints have left the canvas, we remove the Line and let this ActiveObject

deactivate when the run method completes.

The FadingLine does something a little different. This ActiveObject extension doesn’t

move its Line at all: it just changes its color. We start out with a black line, wait a bit, then slowly

change the color from black, through the greys, until it becomes white. At that point, we remove it

from the canvas.

Building a “Pong” Game

Next, we’ll build a pretty boring pong game (unlike the real Pong game which is incredibly excit-

ing), since the paddle can’t actually hit the ball, but it does demonstrate that the paddle can move

at the same time that the ball falls.

See Example: PatheticPong

5

CSC 252 Problem Solving with Java Fall 2015

We build a playing area at the bottom of which we draw a paddle. This paddle will follow the x

position of the mouse as is moves within the window, subject to the restriction that it always stays

within the playing area. Each time the mouse is clicked, a new falling ball is created at the top of

the playing area that starts falling.

Notice the extra work being done in onMouseMove to make sure we never allow the paddle to go

outside the playing area. If the mouse’s x position goes too far left or right, we draw the paddle at

the legal position (within the playing area) closest to the mouse position.

How does Java manage both the paddle and the falling balls? There is always one thread that

handles the mouse motion methods (e.g., onMouseMove), and a new thread is created each time

we create a ball. So this program can have multiple threads operating concurrently: one to move

the paddle and one to move each ball currently on the canvas.

Our first improvement will be to add the interaction between the paddle and a ball. If the ball

strikes the paddle (or vice versa), the ball should then be redirected. For simplicity, we’ll just

assume straight up and down motion of a ball for now.

The first question: what part of our program will detect the contact between the ball and the paddle?

We might think it should be the paddle that finds out if it is in contact with the ball, then tells the

ball to start moving in a different direction. Or that the ball knows where it is and could ask the

paddle if it has come in contact.

Either way has the potential to work, but there are two factors that will lead us to choose the former:

1. We can have the ball check for contact with the paddle in its run method, which will be

executing for as long as the ball is in existence. We can only have the paddle check for

contact when it receives a mouse event. This would preclude us from detecting the case

where the paddle is stationary and comes into contact with a ball.

2. There is one paddle through the life of the program and it is known at the time we create

each ball. So the ball can be given information about the paddle when it is constructed. The

paddle, on the other hand, would need to know about all balls that are created and check for

contact with each. It would also need to know when a ball ceases to exist.

Therefore, we will pass information about the paddle to the ball’s constructor. When the ball

moves, it will check to see if it is in contact with the paddle.

See Example: LessPatheticPong

Here, the WindowController class is very similar. It only adds the new parameters required

by the SimplePongBall constructor.

The SimplePongBall is the FallingBall that has been enhanced to change direction (to go

up) when it comes in contact with the paddle, and to change direction (to go down) if it reaches the

top of the playing area. It takes the paddle and the highest point of the playing area as additional

constructor parameters and remembers these values for use in the run method.

The run method now needs to keep track of the speed, which may be positive or negative depend-

ing on which direction the ball is travelling. In addition to the motion, we check to see if the ball

6

CSC 252 Problem Solving with Java Fall 2015

has reached the top of the playing area. If so, we make sure the ball is travelling downward (pos-

itive Y speed). We also check to see if the ball is in contact with the paddle using a new method

called overlaps. If so, we make sure the ball is going to move upward (negative Y speed).

If the ball ever falls below the bottom of the canvas, it is removed and the run method returns,

deactivating this ball.

Our final enhancement, at least for now, is to add horizontal motion to the ball, and to make it

bounce off the side walls

See Example: Pong

Our Pong class is almost identical to LessPatheticPong. The only difference is in what we

have to pass to our ball, now called a PongBall. The PongBall now needs to know about the

boundaries of the playing area, which we can conveniently provide by passing the FramedRect

we call boundary.

The main things we need to be concerned about in the constructor are determining the boundaries

of the playing area and drawing the ball at its initial position. We determine the playing area

bounds from the geometry of the FramedRect passed in, with a little extra work to account for

the ball size for the right side (why?).

We then generate a random x position within the playing board, and create the ball at that position

just below the top of the board. Recall the mechanism for using the Random class’s nextDouble

method to get random numbers in any range.

We don’t get the ball moving until down in the run method. There, we first choose initial speeds

in the x and y directions, again randomly. Then as we move the ball, we check to see if we’ve hit

a wall or the paddle, adjust our speeds accordingly to take care of the bounce, and move the ball.

This is far from perfect, but somewhat playable. Probably the most obvious flaw is that we always

simply reverse the y speed when the ball strikes the paddle, even if the ball hits the side instead of

the top. That doesn’t seem very natural. We also have no way for multiple balls to interact with

each other – they simply pass through each other magically.

Talking to an ActiveObject

The ActiveObjects we have seen so far are created and then do their own thing (their run

method) without any further instruction from the main class. However, we are not restricted in that

way. We can send messages to ActiveObjects just as we can send them to other objects.

Consider this minor enhancement to our pong game:

See Example: TiltPong

This one will allow us to give a little “nudge” to the most recently created ball by clicking the

mouse outside of the playing area. We do so by adding a method nudge to the PongBall class

and calling that method at the appropriate time in our WindowController, which is now called

TiltPong. To give us an indication that this worked, the nudge method will also temporarily

change the color of the ball to red.

7

CSC 252 Problem Solving with Java Fall 2015

In order to have the speed variables affected by the nudge method, they have been changed from

local variable of run to instance variables. When nudge is called, the xSpeed and ySpeed

variables are changed so that the next time the while loop in the run method moves the ball, its

speed will be different.

The only other change in the PongBall class is to change the ball’s color back to black each time

around the while loop in the run method.

The changes to the TiltPong class are simple: a new instance variable in which we remember

the most recent ball, and a call to the ball’s nudge method when the mouse is clicked outside the

playing area.

Graphics Images (and more advanced ActiveObjects)

Our goal is this example:

See Example: FallingSnow

In order to achieve this, we first need to figure out how those snowflakes can be drawn.

Drawable Images

Consider this example:

See Example: Snowman

In the program above, we drag a picture of a snowman around the screen. The picture comes from

a “gif” file named snowman.gif.

The image is certainly too complex to draw using our ObjectDraw primitives. Fortunately, we can

read an image from a file and save it as an object with type Image. Image is a built-in Java

class from the library java.awt. Hence you need to make sure that any program using Image

imports java.awt.Image or java.awt.*.

The first line of the begin method of the Snowman class shows how to do this when given a

“gif” file (a particular format for holding images on-line):

snowManPic = getImage("snowman.gif");

where snowManPic is an instance variable declared to have type Image. Downloading a “gif”

file can often be slow, so we usually will want to create an image from the “gif” file at the beginning

of a program and save it until we need it. If you download “gif” files in the middle of your program,

you may cause a long delay while the computer brings it in from a file on a local disk or fileserver.

While objects of class Image can hold a picture, they can’t do much else. We would like to

create an object that behaves like our other graphics objects (e.g., FramedRect) so that it can be

displayed and moved around on our canvas.

The class VisibleImage from the ObjectDraw library allows you to treat an image roughly

8

CSC 252 Problem Solving with Java Fall 2015

as you would a rectangle. In fact, imagine a VisibleImage to be a rectangle with a picture

embedded in it. You can do most things you can do with a rectangle, except that there’s a neat

picture on top.

To create a new VisibleImage:

new VisibleImage(anImage, xLocation, yLocation, canvas);

For example, new VisibleImage(snowManPic, 10, 10, canvas); would create an

object of type VisibleImage from the image in snowManPic and place it on canvas at

location (10,10), with size equal to the size of the image it contains.

If you associate a name with your VisibleImage, you can manipulate it using some familiar

methods:

VisibleImage snowMan;

And then later:

snowMan = new VisibleImage(snowManPic, 10, 10, canvas);

snowMan.setWidth(124);

snowMan.setHeight(144);

Our original snow man image is large: 619x718 pixels, but we shrunk him down to a more reason-

able size.

What do you think happens if we say:

snowMan.setColor(Color.green);

Nothing! It’s not an error, but nothing is done for you either! Because the picture already has its

own colors, it wouldn’t make sense to change it to a solid color. Similarly, the value returned by

snowMan.getColor() is always Color.black, no matter what colors are in the image!

The rest of the code for the Snowman class is just a variation on the earlier programs that allowed

us to drag around squares and T-shirts.

Multiple ActiveObject types

We’re now ready to consider the example:

See Example: FallingSnow

First consider class Snow, which extends WindowController. While it includes code for

loading the images of the snowflakes and draws the background picture, the only indication that

9

CSC 252 Problem Solving with Java Fall 2015

something interesting is going on is in the method onMouseClick. On each click, a new object

of type Cloud is created. It is the Cloud object that is responsible for all those snowflakes. The

snowflake image is passed as a parameter to the Cloud constructor.

First look back at the code for class FallingBall. A falling snowflake will be very similar,

except that the object falling will be a VisibleImage rather than a FilledOval. But there’s

more to it than this.

We created a FallingBall every time the user clicked the mouse. When the user clicks the

mouse now, the process of generating and dropping snowflakes begins. There’s another class

here: the Cloud, which we’ve also made an ActiveObject. A cloud is an ActiveObject

that continuously generates snowflakes. Each snowflake is an ActiveObject that, when con-

structed, floats down the screen.

Let’s jump right to the run method of the Cloud class. It starts by declaring a local vari-

able, snowCount, initialized to 0. The rest of the method is a while loop which increments

snowCount, constructs a FallingSnow (more on FallingSnow soon!), and then pauses for

900 milliseconds before repeating. The while loop’s body will be run 150 times before stopping.

The constructor for Cloud saves its parameters as instance variables. Both will be needed for

the calls to the FallingSnow constructor in the run method. Since the values of the formal

parameters go away at the end of the method or constructor in which they are declared, we need to

save them in instance variables.

The constructor also creates snowGen, a random number generator used to determine where each

snowflake will be dropped and how fast it travels down the screen.

Finally, the constructor calls start(), as required to activate our ActiveObject.

Going back to method run, we will see below that the constructor for FallingSnow takes pa-

rameters which are a DrawingCanvas on which to draw the image, the Image of the snowflake,

a double that determines how far from the left edge of the screen the snowflake will be located,

another double to indicate how fast the snowflake falls, and finally an integer indicating the

height of the window.

Two of the actual parameters: canvas and snowflakePic are values of instance variables

that were provided values by the constructor of Cloud. Cloud simply remembers and passes

along these values to FallingSnow and never uses them in any other way. The other two actual

parameters are random values generated by snowGen.

Let’s now take a look at the FallingSnow class, another ActiveObject.

The constructor remembers the speed and canvas in instance variables so that they can be used

later in the run method, and then creates a VisibleImage from the Image of a snowflake.

Once the image has been embedded in a VisibleImage, we can move it around on the screen.

In fact, since we created the image at the coordinates (0,0) – the upper left corner of the screen, we

immediately move it to its correct x-coordinate and set its y-coordinate so that the bottom of the

snowflake is off the top of the screen.

Why not just create the snowflake at the right position instead of creating it at (0,0) then moving it?

10

CSC 252 Problem Solving with Java Fall 2015

Unfortunately, we cannot determine the dimensions of a VisibleImage until it has been created.

That is, we cannot get this information from the Image used in constructing it. Thus we had to

first construct the snowflake before we could see how high it was, and thus, how far up the screen

it needed to be located so that it would not be seen! We could have created the VisibleImage

with x-coordinate x, but since we knew we were going to have to move it anyway, we just created

it at (0,0) and then moved it both across and up.

As usual, the last line in the constructor is the command start().

The runmethod of FallingSnow is quite simple. It is a simple loop that pauses and then moves

the snowflake. It terminates when the snowflake is off the screen. It then removes the snowflake

from the canvas.

When executing, this program contains several passive objects and may contain hundreds of ac-

tive objects, all running at once. There is an object corresponding to the main class, Snow, that

loads the snowflake pictures and draws the scene. It responds to mouse clicks by creating an

object of class Cloud. The creation of a Cloud results in the creation of 150 objects of type

FallingSnow.

Making the wind blow

Suppose we want to extend this example to simulate a snowstorm with wind. The idea is that we

want each snowflake to have the x component of its velocity change over time as the wind speed

and direction shifts around. We could have each snowflake move side to side by random amounts,

but that would look less realistic. Snowflakes generally all move together with the wind as it shifts,

so we’d like all of our snowflakes to respond in the same way to the wind as it shifts.

There are some important design decisions here: should we try to have the wind’s speed and direc-

tion part of the window controller class? We could try that, but recall that the window controller’s

methods only occur when there are mouse events triggered. So unless we only wanted the wind to

change only when certain mouse events occur, the wind will need its own brain – it should be an

active object.

But then how does the wind have its effect on all of these falling snowflakes? It would not be

reasonable to attempt to have the wind keep track of all of the snowflakes and have them each

move periodically. After all, there are snowflakes being created and executing and leaving the

canvas all the time. That’s a lot to keep track of. It would be much easier to tell all of those

snowflakes about a single wind object, and each time each snowflake moves, it can “ask” that wind

object how much it should move side to side along with its downward movement.

See Example: WindyFallingSnow

ActiveObject recap

To recap, to create an ActiveObject you:

1. define a class that “extends ActiveObject”

11

CSC 252 Problem Solving with Java Fall 2015

2. define its constructor and say start() at the end.

3. define at least a public void run() method.

To see why we include the pause method call in the while loop of ActiveObject’s, look at

the behavior of a minor variant of the program where the only change is that we omit the pause

in the while loop of class Cloud.

The difference is that all of the snowflakes are generated without pause, so they all essentially start

at once (though some are slower to fall than others). The pause makes the animation much more

obvious. (What would have happened if we omitted the pause in the FallingSnow class?)

12

