Computer Science 252

Problem Solving with Java
The College of Saint Rose
Fall 2014

Topic Notes: Defining Classes

Defining Classes

So far, we have been operating directly on the objectdraptgca primitives such asr anedRect
andFi | | edOval . Your work on the laundry lab may have started to give you dication that
such an approach can become tedious as our programs becomeanplex. You have to update
both aFr amedRect and aFi | | edRect that, together, form the swatch of laundry during the
dragging operations.

Suppose we wanted to augment our basketball game to havecareatistic-looking basketball:
See Example: NiceBasketball

This is a much nicer-looking basketball than what we had inariginal game. We do have one
new objectdraw construct to help us out here: En@anmedAr c. This draws only a part of a

FramedOval . It determines which part with two additional parameterstaat angle and an arc
angle, both specified in degrees. The start angle refergtartple from the right edge of the oval,
counterclockwise, where we are to start drawing. The aréeamders to the number of degrees,
counterclockwise, to draw.

We will not focus much on that aspect of this example, butesiranmedAr cs are useful building
blocks (along with their cousins the& | | edAr cs), another example demonstrates a bit more
about how to use them:

See Example: Arcs

But back to our nice basketball. Consider how messy our codéMmmeome if we decided to add
a dragging functionality to this basketball. Not just onet just two, but six objects would need
to be moved in the dragging code.

That certainly would become tedious. And we might also wanise this nice basketball in other
programs and in other ways.

Java provides a mechanism that will help us to defieé ass of objects, much like objectdraw
defined our graphics primitives, that we can use in our progra a very convenient way.

Consider this example, which defines a class cdlieceBBal | in Ni ceBBal | . j ava and then
makes use of it in an updated version of our basketball garadamiliarWw ndowCont r ol | er
class calledcancyBasket bal | .

See Example: FancyBasketball

CSC 252 Problem Solving with Java Fall 2014

What is aNi ceBBal | ? As we can see, it is a basketball. The ability to draw baslstts not a
standard feature of Java or of the objectdraw library. Thigygam shows how Java allows us to
define new classes of objects appropriate to the needs oatlieytar program we are writing.

You've already been defining classes — iNendowCont r ol | er extension that has been the
framework for each program we've seen is a class definitisamRhis you are familiar with the
basics of the structure that will be required to defild aeBBal | custom class.

public class Nane

{

constant and vari abl e decl arati ons

met hods

Our earlier classes always extend&chdowCont r ol | er, which indicated that they would be
designed to respond to mouse activities in the window. Thlswat be the role of thé\i ceBBal |

class, soitwillnoext end W ndowCont r ol | er anditwill notinclude methods likenMbuseC i ck
oronMouseDr ag. Instead, the body of thiéi ceBBal | class will consist of definitions of meth-

ods corresponding to the things we want to be able to tbll @eBBal | to do, likenove and
nmoveTo.

When we define such a class:

1. We declare instance variables describe the parts arel ¢ftain object of that class. Any
individual basketball is composed of ovals, lines and accshe instance variable of the
Ni ceBBal | class refer to these objects.

2. We provide a special method called@nstructor. We've been using constructors for our
library objects - whenever we write a construction. When we“seew Fr anmedRect ”,
Java knows what to do to makeFa anedRect appear on the screen because someone
defined a constructor fdfr amedRect . When we write a constructor, we will write a list
of statement to construct the components of the objectetkgihe parts of the basketball)
and associate the with instance variables defined in the lzas.c

3. We define methodsi-e, lists of statement explaining how to perform the actionswaat
the new objects to know how to do.

Mutator Methods

Let’s first consider one of the methods in theceBBal | class:

public void nove(doubl e dx, double dy) {
body. nove(dx, dy);
Il

CSC 252 Problem Solving with Java Fall 2014

/1 and all of the other parts also are noved

The first keyword in a method declaration is eitpabl i c orpri vat e. (The keywordor ot ect ed
is also allowed, but we will not use it in this course.) Thesgwords determine the “visibility”

of a method. If a method is declared to pebl i ¢ then it can be called from methods in other
classes. For example, tlmMbuseDr ag method of theFancyBasket bal | class calls the
nove method to theNi ceBBal | object we create. This would not be possible if that first key-
word had beempr i vat e.

All of our instance variables aner i vat e, because they should only be used inside of the class
where they are declared. Occasionally we will have constiuatt need to be visible outside of the
class that contains them. In that case we will declare thepub$i c static fi nal

The next keyword in the declaration wbve above isvoi d. This (not very intuitively) indicates
that it is amutator method. That is, it simply performs an action rather than returnéngalue
which can be used in an expression.

Next comes the method’s nammmve for example. After this we place formal parameter declara-
tions in parentheses.

Most of the methods we have define so far, have expected ooe giénformation when invoked
(e.g., theLocat i on provided to mouse handing methods). Therefore, the heafldisse meth-
ods have all declared a single formal paramelaxcat i on poi nt”.

The methods associated with an object likdaeBBal | may expect to be provided other types
of information when invoked. For example, th@ve method will expect a pair of numbers
specifying x and y offsets. The parameters listed in a meéshieglader must correspond to the
information that will be provided when the method is invoked

The parameters of move are of tygpeubl e. These give the distance that the object should move
in the x and y directions, respectively. Recall that the wayuae therove method is as follows:

anQbj ect . nove(10, 20);

In method headers/signatures, parameters serve as dieciaraf variables. Thus the occurrence
of “doubl e dx” between parentheses serves to declare the varihblas a parameter of type
doubl e. Parameters are used to pass along information to a methuad the body of method
nmove can use the variabléx to represent the number provided when the method was invoked
to specify the desired x offset. The correspondence betweeifiormal parameter names and
the actual parameter values is determined by their ordee fifst actual parameter listed in a
method invocation is associated with the first formal patemiested in the header and so on. So
in FancyBasket bal | 's onMouseDr ag method, when the call

bal | . rove(point.getX() - |astMuse. getX(),
poi nt.getY() - |astMuse.getY());

CSC 252 Problem Solving with Java Fall 2014

is executed, Java transfers control torttoey e method ofNi ceBBal | and initializesdx anddy to
theresults opoi nt. get X() - | ast Mouse. get X() andpoi nt.getY() - |astMuse. getY(),
respectively.

TheNi ceBBal | class has two other mutator methodsveTo andchangeToRandontCol or .
The method header faroveTo is very similar to that oimove. The statement list found in
noveTo’s method body is much shorter than thatv e’s, however. This is because the definition
of noveTo takes advantage of the definition wbve: noveTo computes the offset from the
ball’s current location to the desired location and therokas themove method to move the 6
pieces of the ball.

ThechangeToRandontCol or mutator method is included mainly to emphasize that the meth
ods we define in a class do not need to be only those we have reeeriife graphics primitive
we've been using so far. Many of our methods will have famitiames likemove, cont ai ns, or

r enoveFr onCanvas, but that's only because we are often defining graphicalatj@nd those
are natural operations on graphical objects.chmangeToRandontCol or, we have provided
functionality for ourNi ceBBal | objects that does not exist for standard graphics prinstike
FranedRect .

Constructors

Constructors are used to perform the actions which must bertakdn when the object is created.
As a result, they often perform the same kind of actions ast#@ n method in the classes
extendingW ndowCont r ol | er. In particular, they typically provide initial values ofstance
variables and create the graphic objects needed in a class.

The form of the constructor will be very similar to that of redtls:
public C assNane(parans here ...)

The name of the constructor will always be the same as the mdrttee class being defined.
Thus if we were defining a class namisidceBBal | , the constructor would have the same name.
Constructors are usualfyubl i ¢, and may have as many parameters as are necessary to provide
them with the information necessary to initialize instamagables. However, constructors differ
from methods by omitting theoi d before the constructor’'s name.

As an example, the constructor for cld¢sceBBal | has parameters corresponding to the starting
location of the upper left hand corner of the ball, the siz¢hefball desired and information on
whatcanvas the ball should be drawn. Thus its declaration looks like:

public Ni ceBBall (double left, double top,
doubl e si ze, Draw ngCanvas aCanvas)

The type of the last parameter of theceBBal | constructor is new to usr awi ngCanvas

is the type of the variableanvas that we have been using when creating graphic objects. Itis
the type of a surface that can be used for drawing graphiatshjelo this point, we have only
been using the standard one (calbethvas) that is defined for us by th& ndowCont rol | er.

4

CSC 252 Problem Solving with Java Fall 2014

SinceNi ceBBal | does noext end W ndowContr ol | er, it would not have any idea what
canvas is unless we tell it, and we tell it that information by pagsihas a parameter to the
constructor.

Accessor Methods

The last piece of the definition of tid ceBBal | class is the specification of it&cessor meth-
ods: cont ai ns, get X, andget Y. Accessor methods allow us to ask questions of an object and
get information back.

Thecont ai ns method’s header looks like:
publ i ¢ bool ean contai ns(Locati on point)

This differs from the mutator methods in that the magic wood d has been replaced by the name
of the typebool ean. This is because the method we are defining here is an aceestiord that
will return a boolean value. That is, the results of sendmg message ta.€., calling this method
of) an object will be a value: eithemr ue orf al se. As a result, it is used in a context expecting
abool ean result, such as:

i f (anObject.contains(lastPoint))

In fact, the wordvoi d serves a similar function. It tells us what kind of value thetihod being
declared will produce — in the case of a mutator method: neeval

Variables and Scope

The previous example also brings up an important consideraince we start having multiple
classes working together, and classes with many methogsmékhodsrove andchangeToRandontCol or
each havéocal variables.

These are variables declared right inside a method, antl @xig in that method’s body. The
declarations look a lot like an instance variable declamtexcept that we omit thept i vat e”
gualifier, since local variables are already very “privatghe name is only meaningful within the
method where it is declared.

To summarize the ways we have to declare names for variabtesanstants:

e Instance variables are declared outside of any method andsaiole inside all methods. The
value of an instance variable is retained from one methdda#ie next — for the entire life
of the object.

e Named constants are also declared outside of any method@ndsile inside all methods.
The value never changes once set initially.

CSC 252 Problem Solving with Java Fall 2014

e Formal parameters are used to communicate information tetaod from its caller. The
names are meaningful only within the method. New values areigied (by the caller in the
corresponding actual parameters) each time the methodtles.ca

e Local variables are used to store temporary values needhahvilie execution of a method.
They exist only within the method in which they are declared do not retain their values
from one call of the method to the next.

Less experienced Java programmers are sometimes contusgidvehen to use an instance vari-
able and when to use a local variable. The correct choicendispen how long the information
that will be stored in the variable needs to exist. If it onBeds to exist within a single method
execution, it should be a local variable. If it needs to eaisioss method calls, it should be an
instance variable.

Multiple Instances of a Custom Class

One of the great advantages of defining a custom class is tnabw thennstantiate (i.e., con-
struct) as many objects of that class as we wish.

For example, we could update our “mouse droppings” prog@uaraw lots of nice basketballs
instead of little red circles:

See Example: DrawBBalls

For another example, let’s return to our laundry theme. Méghstruct a somewhat more belie-
veable laundry item that looks like a T-shirt, create twdanses, and then drag them around the
screen.

See Example: Drag2Shirts

