
Computer Science 252
Problem Solving with Java
The College of Saint Rose
Fall 2013

Topic Notes: Java and Objectdraw Basics

Event-Driven Programming in Java
A program expresses an algorithm in a form understandable bya computer.

That “understandable” form is a program and must be written in aprogramming language.

There are many, many programming languages, each of which has its own advantages and dis-
advantages. We teach our introductory sequence in one particular (and very popular) language:
Java.

We choose Java because it is in wide use, can be used to write programs that perform a wide variety
of tasks to run on a wide variety of computers. It is alsoobject oriented, a term we will see in more
detail soon.

We will see two main types of programs. Some of our programs will execute from beginning to
end to compute a set of outputs (usually text printed to the screen or to files on the computer’s
disks) from a set of inputs (entered at the keyboard or read from disk files). These are what you
are probably most familiar with from your CSC 202 class or other experience.

The majority of our programs will beevent-driven programs. These are more interactive and, in
our case, graphical. An event-driven program responds to actions such as a mouse click or a key
press by performing some specific action, then waits for the next event.

Java was designed with events in mind, and we will take advantage of this. It means we can write
programs that respond to mouse movements and clicks, and we will use those programs to display
and manipulate some simple graphical objects.

A First Program

So we consider our first “real” event-driven Java program:

See Example: TouchyWindow

If we run the program, we see that it brings up an empty window.When I press the mouse button
in the window, a message appears, and when I release the mousebutton, it disappears.

While that in itself doesn’t seem very exciting, keep in mind that the program we are running is
very simple. It fits easily on one screen. Let’s take a look at the text of this program and see what
it all means and why this program does what it does.

import objectdraw.*;

CSC 252 Problem Solving with Java Fall 2013

import java.awt.*;

Theseimport lines tell Java that our program is going to build upon some code that’s already
been written by others. “objectdraw” is a software library developed by the authors of our text that
will allow us to write event-driven graphical programs without worrying about some of the gory
details. “java.awt” is part of the standard Java library that helps to display windows on the screen.

These two lines will appear at the top of nearly every programwe write this semester. Nearly all
Java programs begin with a series ofimport lines to bring in the building blocks they will use.

You have almost certainly imported things like Java’sScanner andRandom classes in previous
programs.

/*
* A first Java/objectdraw example.

* From Bruce, Danyluk, Murtagh, 2007, Chapter 1.

*
* $Id: objectdraw.tex 2218 2013-10-18 14:06:39Z terescoj $

*/

This next segment is acomment. Everything here between the/* and the*/ is ignored by the
computer. It is there entirely for our benefit – the humans whoneed to write or understand the
program.

public class TouchyWindow extends WindowController {

This line gives us (and Java) a lot of information. First, thetermpublic is telling Java that the
program is “public” – we can run it. We’ll see alternatives topublic in some contexts, but every
one of our programs will start this way.

The wordclass tells Java that we are about to define a “class”. The reason forthe term will
become more clear soon.

TouchyWindow is the name of our program (and the name of theclass that defines the pro-
gram.

extends WindowControllermeans that this newclasswe’re defining calledTouchyWindow
is going to build upon (“extend”) another, already existingclass, called aWindowController.
Essentially we’re saying that we’d like to use aWindowContoller, but we’re extending it to
have some new functionality above and beyond, and we’re calling that newclass TouchyWindow.

TheWindowController class is defined by the objectdraw library. It is what puts the win-
dow (i.e., the white box) up on the screen. By itself, it never displays anything in the window. It’s
up to us, in our extension, to make use of that box to do something (slightly) more interesting.

Lastly, there is a “{” character, which tells us that theclass header is complete and now we’re
ready to start to define theclass body.

In our case, the class body contains twomethods:

2

CSC 252 Problem Solving with Java Fall 2013

/* This method will execute when someone clicks on the window.
It will result in a message being displayed.

*/
public void onMousePress(Location point) {

new Text("I’m touched", 40, 50, canvas);
}

/* This method will execute when the mouse button is released.
It will remove everything drawn in the window, which in this
case can only be the text message displayed by the above.

*/
public void onMouseRelease(Location point) {

canvas.clear();
}

These methods are where the actual instructions are given. Each method is preceded by a comment
describing what it does. But we’ll look at the methods themselves.

There are two methods defined:onMousePress andonMouseRelease. In each case, the
name of the method is preceded by “public void” and followed by “(Location point).
For now, we’ll just say that these methods need to have these extra words and symbols – their
meanings and what else we might put in those positions will come later. This is all called the
method header.

Following the method header, there is again a{ character, which denotes the start of themethod
body.

In each of our methods, the method body consists of a single Java statement. InonMousePress,
we tell Java that we want anew piece ofText to be drawn on our screen, and we specify what
text we want, where it should be placed (40 and 50 arecoordinates – more on this soon), and on
what we should draw it (thecanvas, which is objectdraw’s name for the window placed on our
screen by theWindowController).

Specifically,Text is a class, defined by the objectdraw library. When we say “new Text”,
we are instructing Java to find theclass definition for Text and construct an object of that
class. The specifics of how to create thatText object are determined by theparameters listed in
parentheses after “new Text”.

In theonMouseRelease method, the statement is an instruction to thecanvas to erase any-
thing that’s been drawn on it.

Note that each method and the class definition itself is terminated by a “}” character. This ends the
definition of either the method body or class body that was started by a{ character.

So we have a complete program – why does it make our program do what it does when we run it?

As their names suggest, the instructions in the bodies of ourmethods execute in response to mouse
events. Specifically, when someone presses the mouse buttonin our window, theWindowController
looks for a method namedonMousePress and executes the statements in that method. Similarly,

3

CSC 252 Problem Solving with Java Fall 2013

when the mouse is released, the instructions inonMouseRelease are executed.

You’ll notice that there is nomain method here – the program does not do anything (beyond the
creation of the “canvas” which is handled by theWindowController) until we interact with it
using the mouse.

Other Mouse Event Methods

As you might guess, there are other “mouse event” methods available that we can use to make our
program more responsive. Any class thatextends WindowController may define:

public void onMouseClick(Location point)
public void onMouseEnter(Location point)
public void onMouseExit(Location point)
public void onMousePress(Location point)
public void onMouseRelease(Location point)
public void onMouseMove(Location point)
public void onMouseDrag(Location point)

Finally, there is one additional method we can define in aWindowController, calledbegin.
It looks very similar to the others except that it doesn’t have the “Location point”. The
begin method, as its name suggests, executes exactly once: when the program begins.

We will soon make use ofbegin and more of the mouse event handlers, but first, we’ll take a
look at what else we can draw besides bits of text.

Graphics Primitives
To fully understand the instructions within the method bodies we have examined, you need to
understand how the system for drawing graphics within a Javaprogram work.

To place an object on the screen, you include an instruction called a construction in a method. Each
construction will include:

• The wordnew

• The name of the type of thing you want to draw. Possibilities include:

FramedRect, FilledRect
FramedOval, FilledOval
Text, Line

• a list of extra bits of information calledactual parameters that determine the size and position
of the object displayed.

Some examples:

4

CSC 252 Problem Solving with Java Fall 2013

new FramedRect(10, 10, 40, 60, canvas);
new Line(x1, y1, x2, y2, canvas);
new Text("hello there", x, y, canvas);
new FilledOval(100, 100, 30, 60, canvas);

The most important of the parameters included in these constructions are those that specify the
locations and dimensions of objects. They are interpreted in a coordinate system in which:

• The basic unit of measurement is one dot on the computer’s display (i.e., onepixel).

• The y-coordinate is “upside down” compared to the convention from mathematics (i.e., the
bigger the y-coordinate, the closer to the bottom of the screen).

• Theorigin (i.e., the point (0,0)) is located in the upper left corner of the program’s window
(not of the display).

For theFramedRect, this draws the outline of a rectangle with the upper left corner at (10, 10),
with a width of 40 and a height of 60. So where is the lower rightcorner?

TheLine is drawn from(x1,y1) to (x2, y2).

TheText is drawn with its upper left corner at(x, y).

TheFilledOval is drawn within an “imaginary box” with its upper left cornerat (100, 100),
width of 30, height of 60.

Looking back at the TouchyWindow example, we can see that thetext is in fact placed at coordi-
nates (40,50) in this coordinate system.

Giving Names to Objects
Now, let’s experiment a bit with these different event typesand object types.

See Example: ColorEvents

There are two new things in this example. First, we need to know how to set the color of an object.
This is done with the statement:

setColor(Color.xxx);

where “xxx” is one of the colors Java knows about.

But just saying “setColor” isn’t enough – we need to tell Java what object’s color is supposed
to change.

To do this, we need to give the object a name. This is the other new thing in this example. These
names are calledvariables.

In order to use a variable to give a name to an object, we need todo two things:

5

CSC 252 Problem Solving with Java Fall 2013

1. We mustdeclare the variable. In this case, we are declaringinstance variables since they are
defined inside of our class, but outside any method body. We will see other types of variables
later.

private FilledOval oval;
private FramedRect rect;
private Line line;

A declaration “introduces” the name to Java, so when we use itlater on, it knows what
the name “refers” to. In this case, we’re saying that the nameoval is going to refer to a
FilledOval object.

2. We must associate a value with the variable. This is done using an instruction called an
assignment statement.

Our example has three assignment statements:

oval = new FilledOval(50, 50, 100, 200, canvas);
rect = new FramedRect(200, 10, 50, 100, canvas);
line = new Line(20, 300, 300, 20, canvas);

Note how we construct the object on the right hand side of the assignment operator (the=)
and put the name where we wish to remember the object on the left.

Note that we can use any name we want for our variables. There’s nothing saying we couldn’t use
the name “oval” for our FramedRect and “rect” for our FilledOval. But that would be
confusing. It’s always very good practice to use meaningfulnames (and we’ll take points off your
labs and projects if you don’t). It makes the program easier to read and to understand.

There are a few restrictions on the words we can use with names:

• Names must start with a letter.

• Names are case sensitive.

• Letters, digits, and underscores may be used in names.

• Names may not be a word already used by Java (likeclass or extends).

Further, Java programmers generally agree upon a set ofnaming conventions. We will look at these
in more detail as we go on, but for now, we will name all variables using lowercase letters, except
when we have a name that is made up of multiple words, in which case we capitalize all but the first
word. For example, if we want to give a name for a little red circle, an appropriate name would be
littleRedCircle. Other variations such asLittleRedCircle, LITTLE RED CIRCLE
or LiTtLeReDcIrCle would be valid names, but would not follow the naming convention for
variable names.

Now that we have our variables and have assocated objects with them, we can use those variables
to tell Java which objects to use for oursetColor() statements.

6

CSC 252 Problem Solving with Java Fall 2013

rect.setColor(Color.blue);

Just like our mouse event handlers (e.g.,onMousePress) are methods of ourWindowContoller
classes,setColor is a method of the classes that define our graphics primitives(in this case, the
FramedRect). The above shows how we call a method of a class.

A good way to think about this is that we are “sending a message” to the object. So we have the
name of thisFramedRect, and we’re saying “heyrect, set your color to blue!”.

We will soon see many more methods that will allow us to send messages to the graphics primitives,
and we’ll write our own methods for the more complex graphicsobjects we’ll define ourselves.

This next example uses one more method to modify an object: themove method.

See Example: SunAndMoon

Everything here is familiar except:

heavenlyBody.move(0, 1.5);

As you might guess, this message tells the object namedheavenlyBody to move 0 pixels in the
x direction and 1.5 pixels in the y direction (down).

Every time we move the mouse in the window, this code executes, moving the sun down a bit. But
in theonMouseDrag method, the circle moves by -1.5 in the y direction, so it moves up.

Accessing the Mouse Location
There is another important situation in which names are usedto refer bits of information your
program needs to work with. When the instructions within an event handling method such as
onMousePress are followed, it is sometimes handy to refer to the coordinates where the mouse
is located when the event occurs. Java makes this possible byletting you give it a name that should
be associated with this information within the header of themethod.

In fact, Java doesn’t just let you provide such a name — it requires that you provide one. That is
why we have had to include the text “(Location point)” in the header of each mouse event
handling method we have written. This phrase tells Java thatwe want to be able to use the name
point to refer to the place where the mouse is located. We just haven’t actually used this ability
yet.

See Example: MouseDroppings

This program places a small red circle on the canvas every time the mouse pointer moves.

The only line of interest here is

new FilledOval(point, 10, 10, canvas).setColor(Color.red);

7

CSC 252 Problem Solving with Java Fall 2013

Two things are different here from previous examples.

First, we have replaced the first two parameters to theFilledOval construction, which specify
the x and y coordinates of the oval, with a single parameter, “point”.

Each time the mouse is moved, before following the instructions in our method body, Java makes
the name “point” refer to the coordinates of the current mouse position. Whenit sees the name
point in the construction, it uses the coordinates of the mouse as if we had typed them in while
writing the program.

When used in this way, the namepoint is called aformal parameter.

Note that the phrase “Location point” looks a lot like a variable declaration. The name
“Location” describes the kind of thing thatpoint will refer to just as the “rect” in

private FramedRect rect;

described the kind of information that could be associated with the namerect.

There is nothing special about the word “point” in this situation other than it appears in the
method’s header. Just as we can choose any word we want to use for an instance variable name, we
can choose things other than “point” as a formal parameter name. If we take the method from
this example and replace all the “point”s with a different name like “mouseLocation”, the
program will work the same way.

Remembering information between events
Now that we have seen how to use the mouse location for an event, let’s consider a case where we
need not only thecurrent mouse location, but aprevious mouse location as well.

We will construct a program to draw “Spirographs” – when the mouse is pressed then dragged, a
series of lines are drawn from the press point to the current location.

See Example: Spirograph

Note that in this example, the only thing done inonMousePress is to save the value of the
formal parameterpoint in an instance variablelinesStart. If we did not do this, the value
of point would be lost.

The instance variable declaration is of typeLocation. That makes sense –point is aLocation,
so the instance variable we’d use to store its value would also be aLocation.

Then in theonMouseDrag method, we use the savedLocation in linesStart as one end-
point of aLine that we draw to the currentpoint from onMouseDrag’s formal parameter.

Now let’s consider a small variation – inonMouseDrag, rather than simply drawing aLine,
we’ll also update the savedLocation value.

What have we done? We’ve created a “scribber” drawing program!

See Example: Scribble

8

CSC 252 Problem Solving with Java Fall 2013

And now, we’ll look at an example where we create an object in response to one event and change
it in response to subsequent events.

See Example: RubberBand

Here, we start by drawing a very small line – from thepressedPoint to itself – when the mouse
is pressed. We remember thatLine in an instance variable.

Then when the mouse is dragged, we modify thatLine to have a new endpoint at the current
mouse location. The result is a “rubber banding” effect.

9

