
Computer Science 252
Problem Solving with Java
The College of Saint Rose
Fall 2013

Topic Notes: Active Objects

Repetition
People find repetition boring. Fortunately, computers don’t feel this way. This is fortunate because
repetition is the only way we can exploit the full power of a computer. As we discussed in the first
class, part of the computer’s power comes from the fact that it can follow the instructions stored
within its memory rapidly without waiting for a human being to press a button or flip a switch.

In all of the examples we have considered so far, the sequences of instructions performed when a
mouse event occurs are quite short and then the computer has to wait for us again. The computer
works for a fraction of a second then waits. We could get the computer to do more work in response
to our mouse events by writing methods with thousands or millions of instructions, but this would
be painful.

But we can get the computer to execute thousands or millions ofinstructions without writing thou-
sands or millions of instructions ourselves: we can have thecomputer execute the same instructions
over and over and over again.

At first, this may seem like a boring and inefficient use of the computer. In fact, when in comes to
following instructions, doing the same thing over and over again can be very interesting. Think of
the scribble program or the Spirograph program. Each time wedrag the mouse in these programs,
the computer “does the same thing” in the sense that it executes the same instructions — the body
of onMouseDrag. Each time these instructions are executed, however, the computer actually
does something different because the meaning of at least oneof the variables referenced in the
instructions,point, has changed.

Consider this example, where we get some “interesting” behavior through repeating the same
instructions without depending on changes in the mouse position.

See Example: RailroadClick

Here, we draw a railroad track, one railroad tie at a time, by clicking the mouse.

Each time the mouse is clicked, theonMouseClick method does the same things. It creates
a FilledRect that looks a bit like a railroad tie and it increases the valueassociated with the
variabletiePosition. BecausetiePosition is increased with each click, the next click
draws its tie a little farther over in the screen. To prevent the program from wasting time by
drawing ties no one will ever see, anif statement is included that skips the creation of new ties
oncetiePosition gets large enough.

It is painful to have to click repeatedly to get the ties drawn. Instead we would like the computer

CSC 252 Problem Solving with Java Fall 2013

to continue drawing ties while they are still on the screen. Java provides thewhile statement, or
“while loop”, to perform repeated actions. Java includes other looping constructs that we will see
later in the semester.

The syntax of awhile statement is:

while (condition)
{

...
}

As in theif statement, the condition used in a while must be some expression that produces a
boolean value. The statements between the open and closed curly brackets are known as the
bodyof the loop.

A common way the while loop is used is as follows:

while (condition)
{

do something
change some variable so that next time you do

something a bit differently
}

Armed with this construct, we can draw all of our railroad ties in thebegin method.

See Example: Railroad

As in this example, the condition controlling thewhile loop will usually involve the variable
that’s changing. If nothing in the condition changes, then the loop will never terminate. Such
a condition is called aninfinite loop. We avoid this, in general, by ensuring that our loops have
a precise stopping condition. While we might be able to look atan algorithm and say “hey, we
should stop now”, Java will not (and in fact cannot, in general) determine if a loop will not stop.

Active Objects
We have now seen how to get one set of commands to be executed repeatedly. But there certainly
are programs that have different things happening simultaneously. That is our next goal.

All of the classes we have defined so far have described “passive” objects. They only do things
when they are told to (i.e., because someone invokes one of their methods).

We can also create “active” objects in Java. They can containinstructions (in a special method
calledrun) that run even when the user doesn’t do anything with the mouse.

If you put a loop that goes on for a long time in anonMouse... method, theWindowController
can’t respond well to additional events because it is busy inthe mouse-handling method. Instead,
we will put such loops in the “run” methods ofActiveObjects.

2

CSC 252 Problem Solving with Java Fall 2013

To create anActiveObject one must:

1. define a class that “extends ActiveObject”

2. define its constructor and say “start()” at the end.

3. define a “public void run()” method.

The classActiveObject is part of the objectdraw library. It includes a number of instance
variables and methods that are used to keep track of objects which can execute in parallel with each
other. The methodstart does some housekeeping which results in the creation of a new“thread
of control” (or just “thread”), which then begins running therun method. Thus evaluatingstart
(or equivalently,this.start()), eventually leads to the creation of a thread that executesthe
run method. When the method terminates, the thread dies, and the object is no longer “active.”

Our first example is of falling balls in a window.

See Example: FallingBalls

Consider theActiveObject in this program - theFallingBall. We see that it does all
the things we said anActiveObject is supposed to do. Its class header tells Java that this
class extendsActiveObject. We have several constants and an instance variable to hold the
FilledOval that will be the actual ball.

The constructor includes the same functionality as things like theTshirt examples - it constructs
the objects that make up an instance of this class (in this case, just aFilledOval). The difference
is that it must end with astart() statement.

Therunmethod contains a simple while loop that defines the ongoing “activity” of aFallingBall.

The conditionball.getY() < yMax is true as long as theball is on the screen. Notice
that the body of thewhile loop contains the statementpause(DELAY TIME). When this is
executed, the thread pauses execution forDELAY TIME milliseconds (thousandths of a second)
before going around to the next iteration of the loop to move the ball by anotherY SPEED pixels
down the screen. If thepause statement were not in the loop the animation would take placeso
fast that we would not be able to see it. For each of our applications we will play with the value of
DELAY TIME until we get a speed of animation that looks the best. For thisparticular application,
we chose a value of 33. If the value ofDELAY TIME were 66, the ball would fall half as fast
(there would be twice as much delay between movements), while a value of 11 would have the ball
falling 3 times as fast.

There is another, more technical, reason for including apause statement in the loop. Many com-
puters only have a single processor. Thus if two threads are active, they are both being run by the
same processor. In order to make it look as through both are being run simultaneously, they take
turns. Different computer operating systems have different ways of taking turns. Some automati-
cally trade off after a certain time interval (usually everyfew milliseconds), while others wait for
one thread to pause before releasing control to the other thread. We will always include pauses in
every loop in therun method of anActiveObject in order to ensure that they alternate turns
fairly.

3

CSC 252 Problem Solving with Java Fall 2013

Once the ball has finished falling off the screen there is no need keep it around. We callremoveFromCanvas
to remove it. Therun method then terminates, “deactivating” ourFallingBall.

Notice that we can create more than one ball at a time. How doesthis work? Well, each time we
click, a brand new instance of aFallingBall is created. That instance has its own copy of each
instance variable: aball and ayMax.

Different “Activities”

There is no rule stating that anActiveObject must involve a constant motion of an object
or objects. In fact, we have an incredible amount of flexibility in what can be controlled in an
ActiveObject. Consider this example:

See Example: VanishingScribble

This program looks a lot like our scribble program from earlier. However, the objects that look like
regularLines that we draw in this one are reallyActiveObjects that will cause theLines to
go away after a period of time.

When we press the mouse, we decide if we are going to draw the next scribble withFallingLine
objects orFadingLine objects. Each is an extension ofActiveObject which will cause the
line to disappear at some point.

First, let’s look at theFallingLine. In many ways, it resembles theFallingBall object. We
draw something on the canvas, activate it, and therun method moves it until it leaves the canvas,
at which point we remove it.

The difference here is that we’ve added some acceleration. TheLine object controlled by the
FallingLine waits a bit, then slowly starts to move theLine down the screen. To simulate
acceleration due to gravity, we have the speed increase by 10% each time we move the line a bit.
Once both endpoints have left the canvas, we remove theLine and let thisActiveObject
deactivate when therun method completes.

The FadingLine does something a little different. ThisActiveObject extension doesn’t
move itsLine at all: it just changes its color. We start out with a black line, wait a bit, then slowly
change the color from black, through the greys, until it becomes white. At that point, we remove it
from the canvas.

Building a “Pong” Game

Next, we’ll build a pretty boring pong game (unlike thereal Pong game which is incredibly excit-
ing), since the paddle can’t actually hit the ball, but it does demonstrate that the paddle can move
at the same time that the ball falls.

See Example: PatheticPong

We build a playing area at the bottom of which we draw a paddle.This paddle will follow the x
position of the mouse as is moves within the window, subject to the restriction that it always stays
within the playing area. Each time the mouse is clicked, a newfalling ball is created at the top of

4

CSC 252 Problem Solving with Java Fall 2013

the playing area that starts falling.

Notice the extra work being done inonMouseMove to make sure we never allow the paddle to go
outside the playing area. If the mouse’s x position goes too far left or right, we draw the paddle at
the legal position (within the playing area) closest to the mouse position.

How does Java manage both the paddle and the falling balls? There is always one thread that
handles the mouse motion methods (e.g., onMouseMove), and a new thread is created each time
we create a ball. So this program can have multiple threads operating concurrently: one to move
the paddle and one to move each ball currently on the canvas.

Our first improvement will be to add the interaction between the paddle and a ball. If the ball
strikes the paddle (or vice versa), the ball should then be redirected. For simplicity, we’ll just
assume straight up and down motion of a ball for now.

The first question: what part of our program will detect the contact between the ball and the paddle?
We might think it should be the paddle that finds out if it is in contact with the ball, then tells the
ball to start moving in a different direction. Or that the ball knows where it is and could ask the
paddle if it has come in contact.

Either way has the potential to work, but there are two factors that will lead us to choose the former:

1. We can have the ball check for contact with the paddle in itsrun method, which will be
executing for as long as the ball is in existence. We can only have the paddle check for
contact when it receives a mouse event. This would preclude us from detecting the case
where the paddle is stationary and comes into contact with a ball.

2. There is one paddle through the life of the program and it isknown at the time we create
each ball. So the ball can be given information about the paddle when it is constructed. The
paddle, on the other hand, would need to know about all balls that are created and check for
contact with each. It would also need to know when a ball ceases to exist.

Therefore, we will pass information about the paddle to the ball’s constructor. When the ball
moves, it will check to see if it is in contact with the paddle.

See Example: LessPatheticPong

Here, theWindowController class is very similar. It only adds the new parameters required
by theSimplePongBall constructor.

TheSimplePongBall is theFallingBall that has been enhanced to change direction (to go
up) when it comes in contact with the paddle, and to change direction (to go down) if it reaches the
top of the playing area. It takes the paddle and the highest point of the playing area as additional
constructor parameters and remembers these values for use in therun method.

Therun method now needs to keep track of the speed, which may be positive or negative depend-
ing on which direction the ball is travelling. In addition tothe motion, we check to see if the ball
has reached the top of the playing area. If so, we make sure theball is travelling downward (pos-
itive Y speed). We also check to see if the ball is in contact with the paddle using a new method
calledoverlaps. If so, we make sure the ball is going to move upward (negativeY speed).

5

CSC 252 Problem Solving with Java Fall 2013

If the ball ever falls below the bottom of the canvas, it is removed and therun method returns,
deactivating this ball.

Our final enhancement, at least for now, is to add horizontal motion to the ball, and to make it
bounce off the side walls

See Example: Pong

OurPong class is almost identical toLessPatheticPong. The only difference is in what we
have to pass to our ball, now called aPongBall. ThePongBall now needs to know about the
boundaries of the playing area, which we can conveniently provide by passing theFramedRect
we callboundary.

The main things we need to be concerned about in the constructor are determining the boundaries
of the playing area and drawing the ball at its initial position. We determine the playing area
bounds from the geometry of theFramedRect passed in, with a little extra work to account for
the ball size for the right side (why?).

We then generate a randomx position within the playing board, and create the ball at that position
just below the top of the board. Recall the mechanism for usingtheRandom class’snextDouble
method to get random numbers in any range.

We don’t get the ball moving until down in therun method. There, we first choose initial speeds
in thex andy directions, again randomly. Then as we move the ball, we check to see if we’ve hit
a wall or the paddle, adjust our speeds accordingly to take care of the bounce, and move the ball.

This is far from perfect, but somewhat playable. Probably the most obvious flaw is that we always
simply reverse they speed when the ball strikes the paddle, even if the ball hits the side instead of
the top. That doesn’t seem very natural. We also have no way for multiple balls to interact with
each other – they simply pass through each other magically.

Talking to an ActiveObject
TheActiveObjects we have seen so far are created and then do their own thing (their run
method) without any further instruction from the main class. However, we are not restricted in that
way. We can send messages toActiveObjects just as we can send them to other objects.

Consider this minor enhancement to our pong game:

See Example: TiltPong

This one will allow us to give a little “nudge” to the most recently created ball by clicking the
mouse outside of the playing area. We do so by adding a methodnudge to thePongBall class
and calling that method at the appropriate time in ourWindowController, which is now called
TiltPong. To give us an indication that this worked, thenudge method will also temporarily
change the color of the ball to red.

In order to have the speed variables affected by thenudge method, they have been changed from
local variable ofrun to instance variables. Whennudge is called, thexSpeed andySpeed
variables are changed so that the next time thewhile loop in therun method moves the ball, its

6

CSC 252 Problem Solving with Java Fall 2013

speed will be different.

The only other change in thePongBall class is to change the ball’s color back to black each time
around thewhile loop in therun method.

The changes to theTiltPong class are simple: a new instance variable in which we remember
the most recent ball, and a call to the ball’snudge method when the mouse is clicked outside the
playing area.

Graphics Images (and more advancedActiveObjects)
Our goal is this example:

See Example: FallingSnow

In order to achieve this, we first need to figure out how those snowflakes can be drawn.

Drawable Images

Consider this example:

See Example: Snowman

In the program above, we drag a picture of a snowman around thescreen. The picture comes from
a “gif” file namedsnowman.gif.

The image is certainly too complex to draw using our ObjectDraw primitives. Fortunately, we can
read an image from a file and save it as an object with typeImage. Image is a built-in Java
class from the libraryjava.awt. Hence you need to make sure that any program usingImage
importsjava.awt.Image or java.awt.*.

The first line of thebegin method of theSnowman class shows how to do this when given a
“gif” file (a particular format for holding images on-line):

snowManPic = getImage("snowman.gif");

wheresnowManPic is an instance variable declared to have typeImage. Downloading a “gif”
file can often be slow, so we usually will want to create an image from the “gif” file at the beginning
of a program and save it until we need it. If you download “gif”files in the middle of your program,
you may cause a long delay while the computer brings it in froma file on a local disk or fileserver.

While objects of classImage can hold a picture, they can’t do much else. We would like to
create an object that behaves like our other graphics objects (e.g., FramedRect) so that it can be
displayed and moved around on our canvas.

The classVisibleImage from the ObjectDraw library allows you to treat an image roughly
as you would a rectangle. In fact, imagine aVisibleImage to be a rectangle with a picture
embedded in it. You can do most things you can do with a rectangle, except that there’s a neat
picture on top.

7

CSC 252 Problem Solving with Java Fall 2013

To create a newVisibleImage:

new VisibleImage(anImage, xLocation, yLocation, canvas);

For example,new VisibleImage(snowManPic, 10, 10, canvas); would create an
object of typeVisibleImage from the image insnowManPic and place it oncanvas at
location (10,10), with size equal to the size of the image it contains.

If you associate a name with yourVisibleImage, you can manipulate it using some familiar
methods:

VisibleImage snowMan;

And then later:

snowMan = new VisibleImage(snowManPic, 10, 10, canvas);

snowMan.setWidth(124);
snowMan.setHeight(144);

Our original snow man image is large: 619x718 pixels, but we shrunk him down to a more reason-
able size.

What do you think happens if we say:

snowMan.setColor(Color.green);

Nothing! It’s not an error, but nothing is done for you either! Because the picture already has its
own colors, it wouldn’t make sense to change it to a solid color. Similarly, the value returned by
snowMan.getColor() is alwaysColor.black, no matter what colors are in the image!

The rest of the code for theSnowman class is just a variation on the earlier programs that allowed
us to drag around squares and T-shirts.

Multiple ActiveObject types

We’re now ready to consider the example:

See Example: FallingSnow

First consider classSnow, which extendsWindowController. While it includes code for
loading the images of the snowflakes and draws the backgroundpicture, the only indication that
something interesting is going on is in the methodonMouseClick. On each click, a new object
of typeCloud is created. It is theCloud object that is responsible for all those snowflakes. The
snowflake image is passed as a parameter to theCloud constructor.

8

CSC 252 Problem Solving with Java Fall 2013

First look back at the code for classFallingBall. A falling snowflake will be very similar,
except that the object falling will be aVisibleImage rather than aFilledOval. But there’s
more to it than this.

We created aFallingBall every time the user clicked the mouse. When the user clicks the
mouse now, the process of generating and dropping snowflakesbegins. There’s another class
here: theCloud, which we’ve also made anActiveObject. A cloud is anActiveObject
that continuously generates snowflakes. Each snowflake is anActiveObject that, when con-
structed, floats down the screen.

Let’s jump right to therun method of theCloud class. It starts by declaring a local vari-
able,snowCount, initialized to 0. The rest of the method is awhile loop which increments
snowCount, constructs aFallingSnow (more onFallingSnow soon!), and then pauses for
900 milliseconds before repeating. Thewhile loop’s body will be run 150 times before stopping.

The constructor forCloud saves its parameters as instance variables. Both will be needed for
the calls to theFallingSnow constructor in therun method. Since the values of the formal
parameters go away at the end of the method or constructor in which they are declared, we need to
save them in instance variables.

The constructor also createssnowGen, a random number generator used to determine where each
snowflake will be dropped and how fast it travels down the screen.

Finally, the constructor callsstart(), as required to activate ourActiveObject.

Going back to methodrun, we will see below that the constructor forFallingSnow takes pa-
rameters which are aDrawingCanvas on which to draw the image, theImage of the snowflake,
adouble that determines how far from the left edge of the screen the snowflake will be located,
anotherdouble to indicate how fast the snowflake falls, and finally an integer indicating the
height of the window.

Two of the actual parameters:canvas andsnowflakePic are values of instance variables
that were provided values by the constructor ofCloud. Cloud simply remembers and passes
along these values toFallingSnow and never uses them in any other way. The other two actual
parameters are random values generated bysnowGen.

Let’s now take a look at theFallingSnow class, anotherActiveObject.

The constructor remembers the speed and canvas in instance variables so that they can be used
later in therun method, and then creates aVisibleImage from theImage of a snowflake.
Once the image has been embedded in aVisibleImage, we can move it around on the screen.
In fact, since we created the image at the coordinates (0,0) –the upper left corner of the screen, we
immediately move it to its correct x-coordinate and set its y-coordinate so that the bottom of the
snowflake is off the top of the screen.

Why not just create the snowflake at the right position insteadof creating it at (0,0) then moving it?
Unfortunately, we cannot determine the dimensions of aVisibleImage until it has been created.
That is, we cannot get this information from theImage used in constructing it. Thus we had to
first construct the snowflake before we could see how high it was, and thus, how far up the screen
it needed to be located so that it would not be seen! We could have created theVisibleImage

9

CSC 252 Problem Solving with Java Fall 2013

with x-coordinatex, but since we knew we were going to have to move it anyway, we just created
it at (0,0) and then moved it both across and up.

As usual, the last line in the constructor is the commandstart().

Therunmethod ofFallingSnow is quite simple. It is a simple loop that pauses and then moves
the snowflake. It terminates when the snowflake is off the screen. It then removes the snowflake
from the canvas.

When executing, this program contains several passive objects and may contain hundreds of ac-
tive objects, all running at once. There is an object corresponding to the main class,Snow, that
loads the snowflake pictures and draws the scene. It respondsto mouse clicks by creating an
object of classCloud. The creation of aCloud results in the creation of 150 objects of type
FallingSnow.

ActiveObject recap
To recap, to create anActiveObject you:

1. define a class that “extendsActiveObject”

2. define its constructor and saystart() at the end.

3. define at least apublic void run() method.

To see why we include thepause method call in thewhile loop ofActiveObject’s, look at
the behavior of a minor variant of the program where the only change is that we omit thepause
in thewhile loop of classCloud.

The difference is that all of the snowflakes are generated without pause, so they all essentially start
at once (though some are slower to fall than others). Thepause makes the animation much more
obvious. (What would have happened if we omitted the pause in theFallingSnow class?)

More Advanced Loops
Now that we have seen how important loops are inActiveObjects, we step back and discuss
more complex loops.

See Example: Knitting

Here, each time the mouse is clicked, we knit a scarf.

If you look carefully at the pictures generated, you will seethat the scarf is formed by overlapping
circles. It is easiest to develop this by first writing code togenerate a row, then expand it to generate
the correct number of rows, in the correct positions.

To draw a row, we will have awhile loop. Each time through the loop we increase the value ofx
position as well as bump up our counter of the number of columns drawn so far,numCols.

10

CSC 252 Problem Solving with Java Fall 2013

That wasn’t too hard, but now we’d like to create successive rows. Each time we start a new row,
there are a number of things that we will need to take care of:

1. We need to reset the value ofx so that we start drawing at the beginning of the row rather
than where we left off.

2. We to increase the value ofy so that rows won’t be drawn on top of each other.

3. We need to resetnumCols back to 0 so that it will keep the correct count when we restart
drawing a row.

4. We need to bump upnumRows each time through.

Now all we need to do is to repeatedly execute the code for drawing a row by placing it inside an
enclosingwhile loop. This is our first example of anested loopstructure: a loop that executes
within a loop.

There is nothing mysterious about a nested loop. The inner loop is simply part of what the outer
loop does over and over.

See Example: FlagMaker

Next, we will look at another program that uses nested loops.We will draw 48-star American flags.

Most of what we see in this program is familiar.

The main thing we use here that we have not seen previously area couple ofprivate methods.

The methodsdrawStripes anddrawStars are called from inside theFlag constructor. They
are not designed to be accessible from outside the class. They are designed only to be useful in
breaking down the constructor into easier to understand pieces.drawStripes, is especially use-
ful because it allows us to avoid duplicating code. Notice that it is used twice inside the constructor.
Once to draw short stripes, and once to draw long stripes. Because we provide different parameters
to it each time, it produces different results. If we did not use this private method, we would have
to repeat the code in the method twice, once for each collection of values of the parameters.

11

