Computer Science 252

Problem Solving with Java
The College of Saint Rose
Fall 2013

Topic Notes: Active Objects

Repetition

People find repetition boring. Fortunately, computers tif@&l this way. This is fortunate because
repetition is the only way we can exploit the full power of arquuter. As we discussed in the first
class, part of the computer’s power comes from the fact than follow the instructions stored
within its memory rapidly without waiting for a human beirggress a button or flip a switch.

In all of the examples we have considered so far, the segearigestructions performed when a
mouse event occurs are quite short and then the computeo hasttfor us again. The computer
works for a fraction of a second then waits. We could get tmepder to do more work in response
to our mouse events by writing methods with thousands ofonaglof instructions, but this would

be painful.

But we can get the computer to execute thousands or milliomstfictions without writing thou-
sands or millions of instructions ourselves: we can havedneputer execute the same instructions
over and over and over again.

At first, this may seem like a boring and inefficient use of tomputer. In fact, when in comes to
following instructions, doing the same thing over and ovgaia can be very interesting. Think of
the scribble program or the Spirograph program. Each timdnag the mouse in these programs,
the computer “does the same thing” in the sense that it ezethie same instructions — the body
of onMouseDr ag. Each time these instructions are executed, however, timpuater actually
does something different because the meaning of at leasbfotie variables referenced in the
instructionspoi nt , has changed.

Consider this example, where we get some “interesting” behdlkrough repeating the same
instructions without depending on changes in the mousdiposi

See Example: RailroadClick
Here, we draw a railroad track, one railroad tie at a time, llmking the mouse.

Each time the mouse is clicked, tbeMouseC i ck method does the same things. It creates
aFi | | edRect that looks a bit like a railroad tie and it increases the valsgociated with the
variablet i ePosi ti on. Becausd i ePosi ti on is increased with each click, the next click
draws its tie a little farther over in the screen. To prevéma program from wasting time by
drawing ties no one will ever see, ah statement is included that skips the creation of new ties
oncet i ePosi ti on gets large enough.

It is painful to have to click repeatedly to get the ties drawrstead we would like the computer

CSC 252 Problem Solving with Java Fall 2013

to continue drawing ties while they are still on the screavaJrovides th@hi | e statement, or
“while loop”, to perform repeated actions. Java includdgeotooping constructs that we will see
later in the semester.

The syntax of avhi | e statement is:

whi | e (condition)
{

}

As in thei f statement, the condition used in a while must be some expreigat produces a
bool ean value. The statements between the open and closed curlgdbsaare known as the
bodyof the loop.

A common way the while loop is used is as follows:

whil e (condition)
{
do sonet hi ng
change sone variable so that next tine you do
sonething a bit differently

}

Armed with this construct, we can draw all of our railroadtie thebegi n method.
See Example: Railroad

As in this example, the condition controlling théni | e loop will usually involve the variable
that's changing. If nothing in the condition changes, thaa lbop will never terminate. Such

a condition is called amfinite loop We avoid this, in general, by ensuring that our loops have
a precise stopping condition. While we might be able to lookratlgorithm and say “hey, we
should stop now”, Java will not (and in fact cannot, in gehatatermine if a loop will not stop.

Active Objects

We have now seen how to get one set of commands to be execptatedly. But there certainly
are programs that have different things happening simeitasly. That is our next goal.

All of the classes we have defined so far have described {gEssbjects. They only do things
when they are told ta.€., because someone invokes one of their methods).

We can also create “active” objects in Java. They can comainuctions (in a special method
calledr un) that run even when the user doesn’t do anything with the mous

If you put a loop that goes on for along time in@anMbuse. . . method, th&V ndowCont r ol | er
can’t respond well to additional events because it is bushermouse-handling method. Instead,
we will put such loops in ther"un” methods ofAct i veQbj ect s.

2

CSC 252 Problem Solving with Java Fall 2013

To create arict i veQbj ect one must:

1. define a class thaext ends Acti veObj ect”
2. define its constructor and sagt“ar t () ” at the end.

3. defineapublic void run()” method.

The classAct i ve(Qbj ect is part of the objectdraw library. It includes a number oftamse
variables and methods that are used to keep track of objéits wan execute in parallel with each
other. The methodt art does some housekeeping which results in the creation of &thesad
of control” (or just “thread”), which then begins runningethun method. Thus evaluatirgt ar t

(or equivalentlyt hi s. start ()), eventually leads to the creation of a thread that exedhtes
r un method. When the method terminates, the thread dies, andjbet s no longer “active.”

Our first example is of falling balls in a window.
See Example: FallingBalls

Consider theAct i veQbj ect in this program - theal | i ngBal | . We see that it does all
the things we said aAct i ve(bj ect is supposed to do. Its class header tells Java that this
class extend#ct i veCbj ect . We have several constants and an instance variable to eld t
Fi | | edOval that will be the actual ball.

The constructor includes the same functionality as thitkgstheTshi rt examples - it constructs
the objects that make up an instance of this class (in thes gast aFi | | edOval). The difference
is that it must end with gt art () statement.

Ther un method contains a simple while loop that defines the ongangvity” ofaFal | i ngBal | .

The conditionbal | . get Y() < yMax is true as long as thbal | is on the screen. Notice
that the body of thewhi | e loop contains the statemepause(DELAY_TI ME) . When this is
executed, the thread pauses executiorCiBlt AY_TI ME milliseconds (thousandths of a second)
before going around to the next iteration of the loop to mdwelall by anotheY_SPEED pixels
down the screen. If thpause statement were not in the loop the animation would take ptace
fast that we would not be able to see it. For each of our apgmitcawe will play with the value of
DELAY_TI ME until we get a speed of animation that looks the best. Foptiscular application,
we chose a value of 33. If the value DELAY_TI ME were 66, the ball would fall half as fast
(there would be twice as much delay between movements)ewhialue of 11 would have the ball
falling 3 times as fast.

There is another, more technical, reason for includipgase statement in the loop. Many com-
puters only have a single processor. Thus if two threadsanreeathey are both being run by the
same processor. In order to make it look as through both ang Ipen simultaneously, they take
turns. Different computer operating systems have diffenays of taking turns. Some automati-
cally trade off after a certain time interval (usually evéew milliseconds), while others wait for
one thread to pause before releasing control to the otheadhiVe will always include pauses in
every loop in the un method of amAct i veCbj ect in order to ensure that they alternate turns
fairly.

CSC 252 Problem Solving with Java Fall 2013

Once the ball has finished falling off the screen there is malikeep it around. We callenoveFr onCanvas
to remove it. The un method then terminates, “deactivating” dtal | i ngBal | .

Notice that we can create more than one ball at a time. How thoesvork? Well, each time we
click, a brand new instance offal | i ngBal | is created. That instance has its own copy of each
instance variable: bal | and ay Max.

Different “Activities”

There is no rule stating that akct i veCbj ect must involve a constant motion of an object
or objects. In fact, we have an incredible amount of flextipiin what can be controlled in an
Act i veQbj ect . Consider this example:

See Example: VanishingScribble

This program looks a lot like our scribble program from earlHowever, the objects that look like
regularLi nes that we draw in this one are reallgt i veQbj ect s that will cause thé&i nes to
go away after a period of time.

When we press the mouse, we decide if we are going to draw thhecréble withFal | i ngLi ne
objects orFadi ngLi ne objects. Each is an extensionAft i veQbj ect which will cause the
line to disappear at some point.

First, let's look at thd=al | i ngLi ne. In many ways, itresembles tik@l | i ngBal | object. We
draw something on the canvas, activate it, and the method moves it until it leaves the canvas,
at which point we remove it.

The difference here is that we've added some acceleratitwe.LTne object controlled by the
Fal | i ngLi ne waits a bit, then slowly starts to move thé ne down the screen. To simulate
acceleration due to gravity, we have the speed increase ¥%yeHeh time we move the line a bit.
Once both endpoints have left the canvas, we removéd.three and let thisAct i veQbj ect
deactivate when theun method completes.

The Fadi ngLi ne does something a little different. ThActi veObj ect extension doesn't

move itsLi ne at all: it just changes its color. We start out with a blacle|imait a bit, then slowly

change the color from black, through the greys, until it mees white. At that point, we remove it
from the canvas.

Building a “Pong” Game

Next, we’'ll build a pretty boring pong game (unlike theal Pong game which is incredibly excit-
ing), since the paddle can't actually hit the ball, but it ssademonstrate that the paddle can move
at the same time that the ball falls.

See Example: PatheticPong

We build a playing area at the bottom of which we draw a padtes paddle will follow the x
position of the mouse as is moves within the window, subthé restriction that it always stays
within the playing area. Each time the mouse is clicked, a fadfimg ball is created at the top of

CSC 252 Problem Solving with Java Fall 2013

the playing area that starts falling.

Notice the extra work being done anMouseMbve to make sure we never allow the paddle to go
outside the playing area. If the mouse’s x position goesdodteft or right, we draw the paddle at
the legal position (within the playing area) closest to theuse position.

How does Java manage both the paddle and the falling ballsteTis always one thread that
handles the mouse motion methodgy(onMouseMove), and a new thread is created each time
we create a ball. So this program can have multiple threadsatipg concurrently: one to move
the paddle and one to move each ball currently on the canvas.

Our first improvement will be to add the interaction betwelea paddle and a ball. If the ball
strikes the paddle (or vice versa), the ball should then beeeted. For simplicity, we’ll just
assume straight up and down motion of a ball for now.

The first question: what part of our program will detect thetect between the ball and the paddle?
We might think it should be the paddle that finds out if it is ontact with the ball, then tells the
ball to start moving in a different direction. Or that theldalows where it is and could ask the
paddle if it has come in contact.

Either way has the potential to work, but there are two factioat will lead us to choose the former:

1. We can have the ball check for contact with the paddle im uts method, which will be
executing for as long as the ball is in existence. We can oalsetihe paddle check for
contact when it receives a mouse event. This would preclgdigam detecting the case
where the paddle is stationary and comes into contact witdla b

2. There is one paddle through the life of the program andknmvyn at the time we create
each ball. So the ball can be given information about the lgadten it is constructed. The
paddle, on the other hand, would need to know about all Hadiisatre created and check for
contact with each. It would also need to know when a ball cetisexist.

Therefore, we will pass information about the paddle to th#'dconstructor. When the ball
moves, it will check to see if it is in contact with the paddle.

See Example: LessPatheticPong

Here, theWw ndowCont r ol | er class is very similar. It only adds the new parameters requir
by theSi npl ePongBal | constructor.

TheSi npl ePongBal | istheFal | i ngBal | that has been enhanced to change direction (to go
up) when it comes in contact with the paddle, and to changetiin (to go down) if it reaches the
top of the playing area. It takes the paddle and the highast pbthe playing area as additional
constructor parameters and remembers these values far the iun method.

Ther un method now needs to keep track of the speed, which may beveositnegative depend-
ing on which direction the ball is travelling. In addition tfee motion, we check to see if the ball
has reached the top of the playing area. If so, we make suitgathis travelling downward (pos-
itive Y speed). We also check to see if the ball is in contathwhe paddle using a new method
calledover | aps. If so, we make sure the ball is going to move upward (negatigpeed).

5

CSC 252 Problem Solving with Java Fall 2013

If the ball ever falls below the bottom of the canvas, it is omed and the un method returns,
deactivating this ball.

Our final enhancement, at least for now, is to add horizontaion to the ball, and to make it
bounce off the side walls

See Example: Pong

Our Pong class is almost identical toessPat het i cPong. The only difference is in what we
have to pass to our ball, now calledPangBal | . ThePongBal | now needs to know about the
boundaries of the playing area, which we can convenientyide by passing ther anedRect
we callboundary.

The main things we need to be concerned about in the constraiet determining the boundaries
of the playing area and drawing the ball at its initial pasiti We determine the playing area
bounds from the geometry of the anedRect passed in, with a little extra work to account for
the ball size for the right side (why?).

We then generate a randanposition within the playing board, and create the ball at gasition
just below the top of the board. Recall the mechanism for usieBandomclass’snext Doubl e
method to get random numbers in any range.

We don'’t get the ball moving until down in theun method. There, we first choose initial speeds
in thex andy directions, again randomly. Then as we move the ball, welcteesee if we've hit
a wall or the paddle, adjust our speeds accordingly to taleeafahe bounce, and move the ball.

This is far from perfect, but somewhat playable. Probabdyrttost obvious flaw is that we always
simply reverse thg speed when the ball strikes the paddle, even if the ball Itside instead of
the top. That doesn’t seem very natural. We also have no waydtdtiple balls to interact with
each other — they simply pass through each other magically.

Talking to an Act i ve(bj ect

The Act i vehj ect s we have seen so far are created and then do their own thigig r(tin
method) without any further instruction from the main cladswever, we are not restricted in that
way. We can send message®it i veQbj ect s just as we can send them to other objects.

Consider this minor enhancement to our pong game:
See Example: TiltPong

This one will allow us to give a little “nudge” to the most rextly created ball by clicking the
mouse outside of the playing area. We do so by adding a methdde to thePongBal | class

and calling that method at the appropriate time inundowCont r ol | er , which is now called
Ti | t Pong. To give us an indication that this worked, thedge method will also temporarily
change the color of the ball to red.

In order to have the speed variables affected bynilngge method, they have been changed from
local variable ofr un to instance variables. Wherudge is called, thexSpeed andy Speed
variables are changed so that the next timewhiel e loop in ther un method moves the ball, its

6

CSC 252 Problem Solving with Java Fall 2013

speed will be different.

The only other change in tHeongBal | class is to change the ball’s color back to black each time
around thawhi | e loop in ther un method.

The changes to th&i | t Pong class are simple: a new instance variable in which we remembe
the most recent ball, and a call to the batlisdge method when the mouse is clicked outside the
playing area.

Graphics Images (and more advancedct i ve(bj ect s)
Our goal is this example:
See Example: FallingSnow

In order to achieve this, we first need to figure out how thossvilakes can be drawn.

Drawable Images
Consider this example:
See Example: Snowman

In the program above, we drag a picture of a snowman arourgttieen. The picture comes from
a “gif” file namedsnowran. gi f .

The image is certainly too complex to draw using our ObjeatDprimitives. Fortunately, we can
read an image from a file and save it as an object with typege. | mage is a built-in Java
class from the library ava. awt . Hence you need to make sure that any program usimege
importsj ava. awt . | nrage orj ava. awm . *.

The first line of thebegi n method of theSnowman class shows how to do this when given a
“gif” file (a particular format for holding images on-line):

snowanPi ¢ = get | mage("snowran. gi f");

wheresnowManPi ¢ is an instance variable declared to have typmge. Downloading a “gif”

file can often be slow, so we usually will want to create an ietfagm the “gif” file at the beginning
of a program and save it until we need it. If you download “dilgs in the middle of your program,
you may cause a long delay while the computer brings it in fediite on a local disk or fileserver.

While objects of clas$ nage can hold a picture, they can’'t do much else. We would like to
create an object that behaves like our other graphics aed, Fr anedRect) so that it can be
displayed and moved around on our canvas.

The classVvi si bl el mage from the ObjectDraw library allows you to treat an image rolyg
as you would a rectangle. In fact, imagine&/iasi bl el mage to be a rectangle with a picture
embedded in it. You can do most things you can do with a retgamegcept that there’s a neat
picture on top.

CSC 252 Problem Solving with Java Fall 2013

To create a newi si bl el mage:
new Vi si bl el mage(anl nage, xLocation, ylLocation, canvas);

For examplenew Vi si bl el mage(snowvanPi ¢, 10, 10, canvas); would create an
object of typeVi si bl el mage from the image insnowivanPi ¢ and place it orcanvas at
location (10,10), with size equal to the size of the imageittains.

If you associate a name with yoWf si bl el nage, you can manipulate it using some familiar
methods:

Vi si bl el nrage snowian;
And then later:

snowivan = new Vi si bl el mage(snowanPi ¢, 10, 10, canvas);

snowivan. set Wdt h(124) ;
snowivan. set Hei ght (144) ;

Our original snow man image is large: 619x718 pixels, but weisk him down to a more reason-
able size.

What do you think happens if we say:
snowivan. set Col or (Col or. green);

Nothing! It's not an error, but nothing is done for you eith8ecause the picture already has its
own colors, it wouldn’'t make sense to change it to a solid cdimilarly, the value returned by
snowivan. get Col or () is alwaysCol or . bl ack, no matter what colors are in the image!

The rest of the code for ttBnowran class is just a variation on the earlier programs that altbwe
us to drag around squares and T-shirts.

Multiple Acti veQbj ect types
We're now ready to consider the example:
See Example: FallingSnow

First consider clas$Snow, which extendsW ndowCont rol | er. While it includes code for
loading the images of the snowflakes and draws the backgnoighare, the only indication that
something interesting is going on is in the metlwodvbused i ck. On each click, a new object
of typed oud is created. It is th€l oud object that is responsible for all those snowflakes. The
snowflake image is passed as a parameter t@ltloeid constructor.

CSC 252 Problem Solving with Java Fall 2013

First look back at the code for clagal | i ngBal | . A falling snowflake will be very similar,
except that the object falling will be\d si bl el mage rather than &i | | edOval . But there’s
more to it than this.

We created &al | i ngBal | every time the user clicked the mouse. When the user clicks the
mouse now, the process of generating and dropping snowflzégies. There’s another class
here: theCl oud, which we've also made afict i veObj ect . A cloud is anAct i veChj ect

that continuously generates snowflakes. Each snowflake A& anveQbj ect that, when con-
structed, floats down the screen.

Let's jump right to ther un method of theCl oud class. It starts by declaring a local vari-
able,snowCount , initialized to 0. The rest of the method iswhi | e loop which increments

snowCount , constructs &al | i ngSnow (more onFal | i ngSnowsoon!), and then pauses for
900 milliseconds before repeating. Tiei | e loop’s body will be run 150 times before stopping.

The constructor foCl oud saves its parameters as instance variables. Both will beedefed
the calls to the~al | i ngSnow constructor in the un method. Since the values of the formal
parameters go away at the end of the method or constructdmichwhey are declared, we need to
save them in instance variables.

The constructor also createsowGen, a random number generator used to determine where each
snowflake will be dropped and how fast it travels down theestre

Finally, the constructor callst ar t () , as required to activate oéct i veQbj ect .

Going back to methodun, we will see below that the constructor féal | i ngSnow takes pa-
rameters which areer awi ngCanvas on which to draw the image, therage of the snowflake,
adoubl e that determines how far from the left edge of the screen tbevake will be located,
anotherdoubl e to indicate how fast the snowflake falls, and finally an integelicating the
height of the window.

Two of the actual parameterg&anvas andsnowf | akePi ¢ are values of instance variables
that were provided values by the constructoiGbioud. Cl oud simply remembers and passes
along these values téal | i ngSnowand never uses them in any other way. The other two actual
parameters are random values generatesifowGen.

Let’s now take a look at thEal | i ngSnowclass, anothefct i ve(bj ect .

The constructor remembers the speed and canvas in instanaeéles so that they can be used
later in ther un method, and then createsvasi bl el nage from thel mage of a snowflake.
Once the image has been embeddedV ai bl el mage, we can move it around on the screen.
In fact, since we created the image at the coordinates (Q/® upper left corner of the screen, we
immediately move it to its correct x-coordinate and set #sogprdinate so that the bottom of the
snowflake is off the top of the screen.

Why not just create the snowflake at the right position instdadeating it at (0,0) then moving it?
Unfortunately, we cannot determine the dimensions\dfsi bl el mage until it has been created.
That is, we cannot get this information from themge used in constructing it. Thus we had to
first construct the snowflake before we could see how high & w&ad thus, how far up the screen
it needed to be located so that it would not be seen! We cowld tieated th&/i si bl el nage

9

CSC 252 Problem Solving with Java Fall 2013

with x-coordinatex, but since we knew we were going to have to move it anyway, segieated
it at (0,0) and then moved it both across and up.

As usual, the last line in the constructor is the commsindr t () .

Ther un method ofFal | i ngSnowis quite simple. Itis a simple loop that pauses and then moves
the snowflake. It terminates when the snowflake is off theestrét then removes the snowflake
from the canvas.

When executing, this program contains several passive tshgex] may contain hundreds of ac-
tive objects, all running at once. There is an object comadmg to the main clas§now, that
loads the snowflake pictures and draws the scene. It resgom®use clicks by creating an
object of clasCl oud. The creation of &l oud results in the creation of 150 objects of type
Fal I i ngSnow.

Acti ve(hj ect recap

To recap, to create akct i veQbj ect you:

1. define a class that “extendst i veObj ect”
2. define its constructor and sayart () atthe end.

3. define at leastpubl i ¢ voi d run() method.

To see why we include theause method call in thenvhi | e loop of Act i veQbj ect ’s, look at
the behavior of a minor variant of the program where the ohgnge is that we omit theause
in thewhi | e loop of classCl oud.

The difference is that all of the snowflakes are generatdubwitpause, so they all essentially start
at once (though some are slower to fall than others).gdues e makes the animation much more
obvious. (What would have happened if we omitted the paudeeiRdl | i ngSnow class?)

More Advanced Loops

Now that we have seen how important loops aréat i veObj ect s, we step back and discuss
more complex loops.

See Example: Knitting
Here, each time the mouse is clicked, we knit a scarf.

If you look carefully at the pictures generated, you will sie&t the scarf is formed by overlapping
circles. Itis easiest to develop this by first writing codgémerate a row, then expand it to generate
the correct number of rows, in the correct positions.

To draw a row, we will have ahi | e loop. Each time through the loop we increase the value of
position as well as bump up our counter of the number of cokidrawn so famuntCol s.

10

CSC 252 Problem Solving with Java Fall 2013

That wasn't too hard, but now we’'d like to create successivesr Each time we start a new row,
there are a number of things that we will need to take care of:

1. We need to reset the valuexfso that we start drawing at the beginning of the row rather
than where we left off.

2. We to increase the value pfso that rows won'’t be drawn on top of each other.

3. We need to resetuntol s back to 0 so that it will keep the correct count when we restart
drawing a row.

4. We need to bump upunmRows each time through.

Now all we need to do is to repeatedly execute the code foridgaavrow by placing it inside an
enclosingwhi | e loop. This is our first example of mested loogstructure: a loop that executes
within a loop.

There is nothing mysterious about a nested loop. The inmgr i®simply part of what the outer
loop does over and over.

See Example: FlagMaker

Next, we will look at another program that uses nested lodfeswill draw 48-star American flags.
Most of what we see in this program is familiar.

The main thing we use here that we have not seen previousty @aple ofprivate methods

The methodslr awSt r i pes anddr awSt ar s are called from inside thél ag constructor. They
are not designed to be accessible from outside the class: arbedesigned only to be useful in
breaking down the constructor into easier to understarnmbpidr awSt r i pes, is especially use-
ful because it allows us to avoid duplicating code. Notic this used twice inside the constructor.
Once to draw short stripes, and once to draw long stripes.UBecae provide different parameters
to it each time, it produces different results. If we did nsg¢this private method, we would have
to repeat the code in the method twice, once for each callecti values of the parameters.

11

