
Computer Science 237
Computer Organization
Williams College
Fall 2005
The WC34000 Assembler

Just as the WC34000 computer supports a subset of the features of the 68000, the assembler pro-
vided for the 34000 supports a subset of the language accepted by the 68000 assembler on the
Mac. This document describes the language accepted by the 34000 assembler and explains how to
use the assembler.

Using the Assembler

To assemble a program, simply type

wc34asm file-name

where file-name is the name of a file containing assembly language statements of the form
described below. The assembler will display error messages on the error output. If no errors are
encountered the assembler will place the translated program in a file named ‘tmem’ in the current
directory. The -l option can be used to request that the assembler produce a listing of the program
on its standard output. Thus,

wc34asm -l prog.s > prog.l

will assemble prog.s leaving a listing of the program in prog.l and the translated program in
tmem. The listing will show the address of the operation field of each machine instruction in the
program. This information can be very useful when debugging a program.

The tmem File

The tmem file contains a binary image to be loaded into the 34000’s memory. When the file
is loaded, memory word 0 will contain the address of the first instruction or the program to be
executed and memory word 1 will contain the base address of the global variable area. The ma-
chine’s hardware uses the contents of word 0 to determine where to begin execution. The executed
program is responsible for loading the contents of word 1 into register A5.

Program Format

A 34000 assembly language program is just a file containing a sequence of instructions and direc-
tives. All characters on a line including and following the occurrence of a semicolon are treated as
a comment to be ignored by the assembler.



CS 237 Computer Organization Fall 2005

The general form of an instruction is:

label op-code operands

The label field is optional.

The 34000 assembler recognizes any sequence of alphabetic and numeric characters that starts
with an alphabetic character as a valid label. No special characters can be used in labels (i.e. ‘.’,
‘$’ and ‘ ’ are not allowed). The case of characters used in labels is significant.

The positioning of instruction components on a line is not restricted. Blanks between identifiers,
constants and delimiters are ignored. In particular, labels need not be placed in the first column or
followed by a colon.1 To allow it to distinguish labels from operation codes, the assembler treats all
operation codes as reserved symbols. That is, they can not be used as labels. Case is not significant
in operation codes.

Operand Format

The 34000 assembler differentiates syntactically between memory operands and register operands.
In certain contexts, only a memory operand can be used. In particular:

• The operand of a jump or branch instruction must be a memory operand.

• The operand of a push effective address (pea) instruction must be a memory operand.

• The first operand of a load effective address instruction (lea) must be a memory operand.

In addition, the first operand of a link instruction must be an address register name.

Register Operands

Register operands are specified using the name of the register desired. The data registers are named
D0, D1, ... D7. The address registers are named A0, A1, ... A7. SP is another name for A7. The
case of alphabetic characters used in register names is not significant.

Memory Operands

The following forms are recognized as valid memory operand specifications:

1However, labels may be followed by colons.

2



CS 237 Computer Organization Fall 2005

(An) - Address register indirect

--(An) - Address register indirect with predecrement

(An)+ - Address register indirect with postincrement

#constant - Immediate data

label - Absolute addressing
constant

label - Program counter indirect with displacement

label - Address register indirect with displacement
label(An)

constant(An)

As indicated above, the use of an operand specification of the form

label

can cause the assembler to generate an instruction using one of three different addressing modes
depending on the type of label used. If the label was defined by an EQU directive, the assem-
bler uses absolute addressing. If the label was defined in a GLOBAL directive, the assembler uses
address register relative addressing (relative to A5). Finally, if the label was defined by its appear-
ance in the label field of an instruction or an ASCII directive, an effective address using program
counter relative addressing will be generated. If an identifier defined as a global or as a statement
label is used in an operand specification of the form:

label(An)

the displacement generated will be the same as if the identifier had been used alone.

Constants in Operands

In those operand formats that require a constant, the assembler will accept either an integer or
character constant. (String constants are also supported by the assembler, but they are only valid in
ASCII directives as discussed below). Any sequence of numeric characters optionally preceded by
a ‘+’ or ‘-’ that is not part of an identifier is recognized as an integer constant. Any single printable
character (except ’ or \) surrounded by single quotes (’) is treated as a character constant. In
addition, certain escape sequences are recognized for character constants. The form of these escape
sequences and the characters they represent are shown below:

3



CS 237 Computer Organization Fall 2005

Sequence Value
’\’’ Single quote
’\n’ Newline
’\t’ Horizontal Tab
’\\’ Backslash

Directives

Directives instruct the assembler in various ways, but do not lead to the production of machine code
statements. The 34000 assembler recognizes several directive: EQU, GLOBAL, ASCII, SOURCE
and STAB.

The EQU Directive

An EQU directive takes the form:

label equ constant

The EQU directive associates the label given with the constant specified. Note that in the assembler,
EQU’s cannot be used to associate symbolic names with registers.

The GLOBAL directive

The GLOBAL directive replaces the DS directive provided by most 68000 assemblers as the means
to allocate storage for global variables. A GLOBAL directive takes the form:

global declaration-list

The declaration list is a list of declarations separated by commas. A declaration is either simply
an identifier or an identifier followed by a parenthesized integer constant. Specifying a simple
identifier as a declaration in a GLOBAL directive asks the assembler to associate the identifier used
with a single word of memory. Specifying an identifier followed by a constant causes the assembler
to reserve a number of words equal to the constant’s value and associate the identifier with the first
word reserved.

For example, the global directive

global a, b, c(10), d

Causes the allocation of a word for each of the names ‘a’, ‘b’ and ‘d’ and the allocation of an
array of 10 words for ‘c’.

More than one global declaration may appear in a program.

4



CS 237 Computer Organization Fall 2005

The ASCII Directive

The ASCII directive is used to allocate and initialize string constants in memory. The form of an
ASCII directive is

label ASCII string constant

This directive tells the assembler to store the characters appearing in the string constant in the
memory locations immediately following those used to store the code generated by the previous
machine instruction (or the character values stored as a result of a previous ASCII directive).
Each character in the string is stored in one word of memory. A word containing the value 0 is
placed after the last character of the string. The label is associated with the word containing the
first character of the string.

The string constants used in ASCII directives are formed by placing double quotes (") before and
after any string of printable characters (except for double quotes and backslashes). Within a string,
any of the escape sequences allowed in character constants may be used. In addition, the sequence
\" may be used to include a double quote in a string.

The SOURCE and STAB Directives

The SOURCE directive and the STAB directive are used to provide information to the assembler
about a high-level language source file from which an assembly language file was created. In
particular, the C-- compiler for the WC34000 includes SOURCE and STAB directives including
enough information to allow the WC34000 debugger to do source-level tracing and to display
variables defined in the source program.

The SOURCE directive is very simple. It takes the form

SOURCE line number

Such a directive informs the assembler that all following assembly language instructions up to
the next SOURCE directive were generated as the translation of the specified line number in the
original source file.

The general form of an STAB directive is:

STAB arguments

The arguments to an STAB are separated by commas.

The STAB directive comes in many varieties. The first argument identifies the type of each STAB
directive. Each of the types is discussed below.

5



CS 237 Computer Organization Fall 2005

STAB Source File Specification

If the first argument to an STAB directive is the word “FILE”, the STAB is used to identify the
name of the source file from which this assembly language file was generated. The file name
appears as a quoted string in the second argument position.

STAB Global Variable Descriptions

STAB directives are used to provide debugger symbol table information about global variables
defined in the source program. The word “GLOBVAR” is used as the first argument of such a
directive. The second argument must be a quoted string specifying the variables name. The third
and fourth arguments are specified using a keyword format. The third argument must be of the
form OFFSET=n where n is an integer constant specifying the offset to the storage used to hold
the variable’s value from the base of the global variable area. The fourth argument must be of the
form TYPE="type-string" where “type-string” specifies the variables type.

The format used for type-strings is designed more for easy digestion by the debugger than for ease
of reading. The single letters “I” and “C” are used to specify the types integer and character. A “*”
followed by a type string is used to identify a pointer to a value of the type described by the type
string. Thus, the type string “*I” would be used for a variable defined as a pointer to an integer.
Array types are indicated by two integers in square brackets followed by a type string. The first
integer indicates the number of elements in the array. The remainder of the type string indicates
the type of the array’s elements. The second integer indicates the size of each value of the element
type. Thus, “[10,1]*I” would describe an array of 10 integer pointers. Finally, structure and
union types are specified by including an integer in curly braces (i.e. “{4}” ). In this case, the
integer is interpreted as the number associated with the structure/union type in the STAB-STRUCT
directive that describes the type to the debugger.

STAB - Function Specifications

If the first argument to an STAB directive is the word “FUNCTION”, the directive indicates that
the code following the directive up until the next STAB-FUNCTION directive was produce to
implement the function whose name appears as the second argument. The name must be specificed
as a quoted string.

STAB - Local Variable Descriptions

Local variables are described using STAB directives that are very similar to those used for global
variables. The first argument of such a directive is the word “LOCVAR” rather than “GLOBVAR”
and the offset is specified relative to the function activation record with which the variable is
associated. Otherwise the directive is identical to a GLOBVAR directive. The second argument
specifies the variable name and the fourth the variable’s type.

6



CS 237 Computer Organization Fall 2005

The assembler associates each STAB-LOCVAR directive it encounters with the function described
by the most recently processed STAB-FUNCTION directive. It is an error to include an STAB-
LOCVAR directive before the first STAB-FUNCTION directive.

STAB - Structure and Union specifications

Each structure or union type used in the source program is described by a STAB-STRUCT directive
followed by a sequence of STAB-COMPONENT directives. The STRUCT directive consists of the
word “STRUCT” as first argument followed by an integer constant as the second argument. Each
structure/union type must have a unique integer constant associated with it. This number is used
to refer to the type in the type specifications found in LOCVAR, GLOBVAR and COMPONENT
directives.

Components are described using an STAB directive with the word “COMPONENT” as its first ar-
gument. The other arguments to such a directive are like those found in LOCVAR and GLOBVAR
directives. The second argument is the component’s name (in quotes), the third is the offset to
the component (relative to the beginning of the structure) and finally the fourth is the type of the
component. Each component is associated with the structure specified by the last STAB-STRUCT
directive processed.

7


