
Computer Science 237
Computer Organization
Williams College
Fall 2005

The WC34000 Computer

The WC34000 is a hypothetical machine designed to resemble the MC68000 but simplified in
ways intended to make it simpler to work with in various course projects. The main simplification
is that while the MC68000 can manipulate byte, word or long word operands, the WC34000 only
operates on word length operands. This simplifies the descriptions of the behavior of many of the
machines instructions. More importantly, by eliminating the need for the operand length specifi-
cations included in many MC68000 instructions, this change relieves the squeeze on space in the
operation field and makes it possible to greatly simplify the instruction set encoding. This handout
describes the architecture of the WC34000.

1 Data Organization

The basic unit of data manipulated by the WC34000 is a 16 bit word. The machine’s memory is
word-addressable (rather than byte-addressable as in the 68000). Up to 65,536 words of memory
may be addressed.

The processor includes eight 16 bit data registers and eight 16 bit address registers. The data
registers are referred to as D0, D1, ... D7. The address registers are referred to as A0, A1, ...
A7. Several instructions reference A7 implicitly as a stack pointer. Accordingly, it can also be
referenced by the name SP.

In addition, the processor includes a program counter register (PC) and a condition code register
(CCR). The CCR in the WC34000 contains bits named N (negative), and Z (zero). These bits
are changed only by the CMP (compare) instruction. They are tested by the conditional branch
instructions.

2 Instruction Encoding

WC34000 instructions are from one to three words in length. The first word of each instruction is
called the operation field. The contents of this word determine the operation to be performed and
the addressing modes to be used to locate the operands. Some of the addressing modes require the
specification of more information than can be fit into the operation field. When such modes are
used, this information is placed in extension words that immediately follow the operation field in
memory.

CS 237 Computer Organization Fall 2005

2.1 Effective Address Specifications

Nearly all operands for WC34000 instructions are specified using a 6-bit effective address specifi-
cation. Each effective address specification is composed of two 3-bit sub-fields — the mode field
and the register field — shown below. The value in the mode field determines which of the ma-

5 3 2 14 0

Mode Register

Figure 1: Effective address specification format

chines addressing modes is to be used to locate the operand. The register field contains the number
of a register whose value is either the operand itself or is to be used to locate the operand.

2.2 Addressing modes

The addressing modes that can be selected using the mode field of an effective address specification
can be grouped into three categories: register direct, memory addressing, and special.

2.2.1 Register Direct modes

These addressing modes specify that the operand is one of the machine’s 16 registers.

Data Register Direct The operand is in the data register specified by the register sub-field of the
effective address specification. This mode is selected when the mode sub-field contains the value
0.

Address Register Direct The operand is in the address register specified by the register sub-field
of the effective address specification. This mode is selected when the mode sub-field contains the
value 1.

2.2.2 Memory Addressing Modes

These addressing modes specify that the operand is in memory and is to be referenced relative to
one of the machine’s address registers.

Address Register Indirect The operand is the word in memory whose address equals the value
currently stored in the address register specified in the register sub-field. This mode is selected
when the mode sub-field is 2.

2

CS 237 Computer Organization Fall 2005

Address Register Indirect with Postincrement The operand is the word in memory whose
address equals the value currently stored in the address register specified in the register sub-field.
After the operand is used, the value in the address register specified is incremented by one. This
mode is selected when the mode sub-field is 3.

Address Register Indirect with Predecrement The value stored in the address register specified
by the register sub-field is first decremented by one. The operand is the word in memory whose
address equals the decremented value stored in the address register specified. This mode is selected
when the mode sub-field is 4.

Address Register Indirect with Displacement This addressing mode requires one extension
word. The operand is the word in memory whose address is the sum of the value in the extension
word and the value in the address register specificed in the register sub-field of the effective address
specification. In computing the address, the value in the address register is treated as a 16-bit
unsigned integer while the value in the extension word is treated as a signed integer represented
using 2’s complement notation. This mode is selected when the mode sub-field is 5.

2.2.3 Special Addressing Modes

When one of the special addressing modes described below is used, the mode sub-field of the
effective address specification is set to 7 and the register sub-field is used to specify exactly which
of the special addressing modes is to be used. Each of the special addressing modes requires one
extension word.

Absolute Address The operand is the word in memory whose address equals the value stored in
this extension word. The value in the extension word is interpreted as a 16-bit unsigned integer.
This mode is selected when the value in the mode sub-field is 7 and the value in the register sub-
field is 0.

Program Counter Indirect with Displacement The operand is the word in memory whose
address equals the sum of the value in the extension word and the value currently in the program
counter register.1 In computing the address, the value in the program counter is treated as a 16-
bit unsigned integer, while the value in the extension word is treated as a 16-bit signed integer
represented using 2’s complement notation. This mode is selected when the mode sub-field is 7
and the value in the register sub-field is 2.

Immediate Data The operand is the extension word. This mode is selected when the mode
sub-field is 7 and the value in the register sub-field is 4.

1The value in the program counter at this point will be the address of the extension word.

3

CS 237 Computer Organization Fall 2005

2.3 Instruction Formats

The operation fields of all WC34000 instructions are encoded using one of the four formats de-
scribed below.

Two Operand Format The operation field of all two operand instructions except LINK are en-
coded as shown in the following diagram: Only 12 of the 16 possible bit patterns that could appear

10 8 7 6 5 1 01115 14 13 12 9 4 23

Opcode Operand2 Operand1

in the 4-bit OP-CODE component of such an instruction are used for two operand instructions.
The remaining bit patterns are reserved for use as prefixes for the opcodes of instructions using
other encoding formats. The two operand fields are used to hold effective address specifications.
Important: Operand 1 is often used as the source operand and operand 2 the destination. Any
associated extension words follow the instruction in that order.

Single Operand Format All single operand instructions are encoded using the format shown
below: The operand field is interpreted as an effective address specification. Branches are included

10 8 7 6 5 1 01115 14 13 12 9 4 23

OperandUnused

00 1 0 0

as members of this group of instructions. Thus, on the WC34000, the target of a branch is generally
specified by explicitly using the “Program Counter Indirect with Displacement” addressing mode.

Zero Operand Format Zero operand instructions are encoded using an 8-bit op-code followed
by 8 bits whose values are ignored by the processor.

Unused

10 8 7 6 5 1 01115 14 13 12 9 4 23

00 0 0 0 0 0 0 0 00 0 0 0 00

4

CS 237 Computer Organization Fall 2005

10 8 7 6 5 1 01115 14 13 12 9 4 23

00 0 1 0 0 0
Opcode Register Operand

The LINK Instruction Format The LINK instruction is the exception to the rule that all WC34000
instructions use a uniform encoding scheme. A special format is used for this instruction. It is
shown below.

The ‘Register’ field specifies the address register whose value is to be saved and then modified.
The ‘Operand’ field uses an effective address specification to indicate the value by which the SP
register should be incremented when the instruction is executed.

3 Instruction Set

Brief descriptions of all of the instructions the WC34000 implements are given below. The nu-
meric values of the operation codes for these instruction are listed in an appendix at the end of this
document.

Instruction Description

ADD src-ea, dst-ea src + dst → dst
Add the value of the source operand to the destination operand.

AND src-ea, dst-ea bitwise (src & dst) → dst
Replace the destination operand with the bit-wise logical AND of the source and destination
operand values.

ASL src-ea, dst-ea dst shifted left by src bits → dst
Shift the value of the destination operand left by a number of bits equal to the value of the
source operand.

ASR src-ea, dst-ea dst shifted right by src bits → dst
Shift the value of the destination operand right by a number of bits equal to the value of
the source operand. The shift is arithmetic, i.e. the sign bit is propagated as the shift is
performed.

BEQ dst-ea if Z then address of dst → PC
If the Z bit of the CCR is 1, transfer program execution to the instruction at the address
specified by the operand. Otherwise, the instruction has no effect.

5

CS 237 Computer Organization Fall 2005

Instruction Description

BGE dst-ea if not N then address of dst → PC
If the N bit of the CCR is zero, transfer program execution to the instruction at the address
specified by the operand. Otherwise, the instruction has no effect.

BGT dst-ea if not Z & not N then address of dst → PC
If the Z and N bits of the CCR are zero, transfer program execution to the instruction at the
address specified by the operand. Otherwise, the instruction has no effect.

BLE dst-ea if Z or N then address of dst → PC
If the Z bit of the CCR is 0 or the N bit is 1, transfer program execution to the instruction
at the address specified by the operand. Otherwise, the instruction has no effect.

BLT dst-ea if N then address of dst → PC
If the N bit is 1, transfer program execution to the instruction at the address specified by
the operand. Otherwise, the instruction has no effect.

BNE dst-ea if not Z then address of dst → PC
If the Z bit of the CCR is 0, transfer program execution to the instruction at the address
specified by the operand. Otherwise, the instruction has no effect.

CLR dst-ea 0 → dst
The operand is set to zero.

CMP src-ea, dst-ea dst - src
Subtract the source operand’s value from the destination operand’s value, but do not modify
either operand. Instead, simply update the bits of the condition code register to reflect the
result of the subtraction. In particular the N bit should be set to 1 only if the result is
negative. The Z bit should be set to 1 only if the result is zero.

DIVS src-ea, dst-ea dst / src → dst
Divide the value of the destination operand by the value of the source operand and store
the quotient in the destination. All quantities are 16 bits wide.

EOR src-ea, dst-ea bitwise (dst 6= src) → dst
Replace the destination operand with the bit-wise exclusive OR of the source and destina-
tion operand values.

GETCH dst-ea input → dst

Replace the operand’s value by the ASCII code representing the next available input char-
acter.

GETNUM dst-ea input → dst
Read input characters until a complete decimal number has been found and store the value
of the number in the operand.

6

CS 237 Computer Organization Fall 2005

Instruction Description

HALT Halt the processor.

JMP dst-ea address of dst → PC
Transfer program execution to the effective address specified by the operand.

JSR dst-ea SP - 1 → SP; PC → (SP)
address of dst → PC
Push the address of the next instruction in memory onto the stack, then transfer program
execution to the effective address specified by the operand.

LEA src-ea, dst-ea address of src → dst
Store the value of the memory address of the source operand in the destination. The source
operand may not be specified using either of the register direct addressing modes.

LINK An, disp-ea SP - 1 → SP; An → (SP);
SP → An; SP + disp → SP
Push the current value of the address register specified by the first operand onto the stack.
Replace the value of An by the value of the SP register after the push. Finally, increment
the SP register by the value of the instruction’s second operand.

MOVE src-ea, dst-ea scr → dst
Move the value of the source operand to the destination operand.

MULS src-ea, dst-ea src * dst → dst
Replace the value of the destination operand with the product of the source and destination
operand. If the size of the result exceeds 16 bits, only the low order 16 bits are stored.

NEG dst-ea - dst → dst
The operand is replaced by the result of subtracting its original value from zero.

NOT dst-ea bitwise not of dst → dst
The operand is replaced by the bit-wise logical negation of its value.

OR src-ea, dst-ea bitwise (src or dst) → dst
Replace the destination operand with the bit-wise logical OR of the source and destination
operand values.

OUTCH dst-ea dst → output
Print the operand, treating its value as the ASCII representation of a single character (the
high-order 8 bits of the operand are ignored).

OUTNUM dst-ea dst → output
Print the operand, treating its value as a signed 16-bit integer.

7

CS 237 Computer Organization Fall 2005

Instruction Description

PEA dst-ea SP - 1 → SP; address of dst → (SP)
Compute the memory address of the operand and then push the address onto the stack.

POPREG dst-ea
The operand is treated as a 16 bit string with one bit corresponding to each of the data and
address registers. Bit 15 is associated with D0, 14 with D1, ... , 7 with A0, ... , and 0 is
associated with A7. For each bit that is one, a word is popped off the stack and its value is
loaded into the corresponding register.

PSHREG dst-ea
The operand is treated as a 16 bit string with one bit corresponding to each of the data and
address registers (see above). For each bit that is one, the corresponding register is pushed
onto the stack.

RTD src-ea (SP) → PC; SP + 1 + src → SP
Pop a new value for the PC from the top of the stack and then increment the SP register by
the value of the instruction’s operand.

SUB src-ea, dst-ea dst - src → dst
Subtract the value of the source operand from the destination operand.

UNLK dst-ea dst → SP; (SP) → dst;
SP + 1 → SP
First, set the SP equal to the original value of the instruction’s operand. Then, replace the
operand’s value by a value popped from the stack.

8

CS 237 Computer Organization Fall 2005

Appendix A: Operation Codes

Two Operand Instructions Single Operand Instructions

MOVE 0100 CLR 00100001
ADD 0101 NEG 00100010
SUB 0110 NOT 00100011
CMP 0111 OUTNUM 00100100
MULS 1000 GETNUM 00100101
DIVS 1001 OUTCH 00100110
AND 1010 GETCH 00100111
OR 1011 RTD 00101000
EOR 1100 UNLK 00101001
LEA 1101 PEA 00101010
ASL 1110 JMP 00101011
ASR 1111 JSR 00101100

BEQ 00101101
Zero Operand Instructions BNE 00101110

BLT 00101111
HALT 00000000 BGT 00110000

BGE 00110001
The LINK Instruction BLE 00110010

PSHREG 00110011
LINK 0001000 POPREG 00110100

Appendix B: Addressing Mode Summary

Mode Field Reg Field Mode Name
000 any Data Register Direct
001 any Address Register Direct
010 any Address Register Indirect
011 any Address Register Indirect with Postincrement
100 any Address Register Indirect with Predecrement
101 any Address Register Indirect with Displacement
111 000 Absolute Addressing
111 010 Program Counter Indirect with Displacement
111 100 Immediate Data

9

CS 237 Computer Organization Fall 2005

EXAMPLE 34000 MACHINE CODE TRANSLATION FROM C
We disassemble, here, a full 34000 translation of the C code for addToTail, below. Beside each assembly language
instruction, we disassemble the particular instruction into its binary form. To help demonstrate decoding of the
instructions the separate fields of the opcode are delineated by spaces. Extension words provide further
addresses, displacements, and constants demanded by the addressing modes. Careful study of this sheet will answer
many questions about the assembly of instructions into 34000 machine code. Comments may be found to the right.
--

typedef struct { void addToTail(e **lp, short v)
short data { e *head = *lp;
struct e *next; if (head == null) {

} e; head = *lp = alloc(2);/* 2==sizeof(e) */
head->data = v;

/* lp is a pointer to a pointer to the head->next = NULL;
* head of the list. The value v is } else {
* added to the end of the list. A addToTail(&(head->next),v);
* hypothetical routine, alloc, is used }
* to generate a pointer to new memory. */ }

--
data: equ 0
next: equ 1
head: equ -1
lp: equ 2 ; NOTE: memory addresses of extension words increase left to right
v: equ 3 ; addr: opcode (X=usually 0) extension word 1 extension word 2 comments
addToTail: ; ----- -------------------- ---------------- ---------------- --------

link a6,#-1 ; $02: 0001000 110 111 100 1111111111111111 (-1)
pshreg #64 ; bit 6=a0 ; $04: 00110011 XX 111 100 0000000001000000 (a7=1,a6=2,a5=4,...)
move lp(a6),a0 ; $06: 0100 001 000 101 110 0000000000000010 (+2)
move (a0),head(a6) ; $08: 0100 101 110 010 000 1111111111111111 (-1)
cmp #0,head(a6) ; $0A: 0111 101 110 111 100 0000000000000000 1111111111111111 (0,-1)
bne elsepart ; $0D: 00101110 XX 111 010 0000000000010001 ($0e+$11=$1f)
move #2,-(sp) ; $0F: 0100 100 111 111 100 0000000000000010 (+2)
jsr alloc ; $11: 00101100 XX 111 010 0000000000011010 ($12+$1a=$2c)
move lp(a6),a1 ; $13: 0100 001 001 101 110 0000000000000010 (+2)
move a0,(a1) ; $15: 0100 010 001 001 000
move a0,head(a6) ; $16: 0100 101 110 001 000 1111111111111111 (-1)
move v(a6),data(a0) ; $18: 0100 101 000 101 110 0000000000000011 0000000000000000 (+3,0)
clr next(a0) ; $1b: 00100001 XX 101 000 0000000000000001 (+1)
jmp commonexit ; $1d: 00101011 XX 111 010 0000000000001001 ($1d+$09=$27)

elsepart:
move v(a6),-(sp) ; $1f: 0100 100 111 101 110 0000000000000011 (+3)
move head(a6),a0 ; $21: 0100 001 000 101 110 1111111111111111 (-1)
pea next(a0) ; $23: 00101010 XX 101 000 0000000000000001 (+1)
jsr addToTail ; $25: 00101100 XX 111 010 1111111111011100 ($26-$24=$02)

commonexit:
popreg #64 ; bit 6=a1 ; $27: 00110100 XX 111 100 0000000001000000 (see pshreg, above)
unlk a6 ; $29: 00101001 XX 001 110 (not like link)
rtd 2 ; $2a: 00101000 XX 111 000 0000000000000010 (+2)

alloc: ... ; $2c:...

10

