
Computer Science 225
Advanced Programming
Siena College
Spring 2021

Topic Notes: Spatial Data Structures

Our next example of object-oriented design involves a spatial data structure. The task is to design
data structures that can store points in the two-dimensional plane. These could easily be general-
ized to three dimensions.

To keep it simple, we will support the following operations on the collection of points:

• add

• get entry with same coordinates

• remove entry at coordinates

• size

• iteration

Implementations of spatial data structures could include other operations such as finding points
near to a given set of coordinates.

To ensure that we have coordinates available and to keep the structure very flexible, we will re-
quire that all objects in our spatial data structures extend the Point2D.Double class, from
java.awt.geom in the standard Java API.

In the Points2D example, the Point2DCollection interface defines the small public inter-
face, and PointsList is an ArrayList-based implementation of the interface that we will
work through in class.

There are also test cases: a small set of Point2D.Double objects in SmallTest and one that
works with METAL data in WaypointTesting.

Quadtrees
Since the list of points in the PointsList structure has no enforced ordering, a linear search
running in O(n) time is needed for the get and remove operations.

Since we are guaranteed to have coordinate data, this could be used in a number of ways to enforce
an ordering, allowing for a more efficient search, likely at the expense of a more complex add
operation.

Some ideas:



CSIS 225 Advanced Programming Spring 2021

• maintain in sorted order by x-coordinate

• maintain in sorted order by y-coordinate

• maintain in sorted order by distance to the origin

In the Points2D example, PointsListSorted is a modificaton of PointsList that can
sort by either coordinate. We will complete the methods that can take advantage of this with a
binary search.

This is better, but still does not take advantage of the two-dimensional nature of our data. Instead
of using a list, we will turn to a tree structure to improve the efficiency of our point collection.

A quadtree is a spatial tree data structure. Each node in the tree is called a quadrant. Leaf nodes
are called terminal quadrants. These terminal quadrants will contain collections of points whose
coordinates fall within that quadrant’s bounds.

The tree’s root represents the entire domain, which, in the case of this little example, is a square.

The four children of the root each represent one quarter of the space taken by the root.

These children can then be divided in four, continuing down as many levels as desired. Different
parts of the domain may be refined to different levels.

2



CSIS 225 Advanced Programming Spring 2021

A quadtree can be used to store the points for our collection, organized by their coordinates as
follows:

• The bounding box of the root quadrant covers the entire universe of possible points (so we
must have a reasonable bound before adding points).

• Points are stored only in leaf quadrants.

• For non-leaf quadrants, we know in which child quadrant a point could be found/should be
added based on its coordinates and the fact that the child quadrants are each 4 equal subsets
of the quadrant.

• An upper limit on the number of points that can be stored in a leaf quadrant, called the
refinement threshold, is used to make sure the (unordered) lists of points within each leaf
quadrant does not get too long.

• When the number of points in a leaf exceeds the refinement threshold, that quadrant creates
4 child quadrants and redistributes its own points among its new children based on their
coordinates.

This leads to much more efficient search operations on our structure, at the expense of an add oper-
ation that now must search its way down the tree for the correct leaf quadrant, and will occasionally
trigger a more expensive refinement operation.

Since our quadtree structure only refines individual leaf quadrants when they exceed the refinement
threshold, this is an adaptive quadtree structure.

In Points2D we will complete such an implementation that satisfies the Point2DCollec-
tion interface.

3


