
Computer Science 225
Advanced Programming
Siena College
Spring 2021

Topic Notes: Java Packages

As Java programs become more complicated, they bring together code and data broken down into
more and more classes. Some of these are written specifically for a given program, but many are
reusable classes that are likely to be brought in from libraries, either the standard Java API classes,
or classes from other sources.

Most modern programming languages have mechanisms that help to manage this. Java provides
the package system. A Java package allows collections of related Java classes to be grouped.
Since Java 9, packages in the Java API are further grouped into modules that contain related Java
packages. We will focus on how classes are organized into packages.

Whether you have thought about it or not, you’ve been using classes from packages since some
of your first Java programs. Classes like Integer and System are part of the package called
java.lang. The classes in this package are available to all Java programs.

A list of all of the classes (and other entities like interfaces and enuerated types) in the java.lang
package can be found by going to the Java API documentation for one of the classes in that pack-
age, and clicking on the link near the top of the page to Package java.lang.

Despite the fact you’ve used these classes in nearly every Java program you’ve ever written, there’s
a good chance you never have typed “java.lang” into any Java program. That’s because the
classes in java.lang are always imported to Java programs. Classes from other packages re-
quire explicit import statements.

Other Java API Packages
You have also used classes from other Java API packages regularly in your programs.

The java.util package includes commonly-used classes like ArrayList, Scanner, and
Random.

You’ve regularly used classes from other Java packages as well, such as java.io, java.text,
java.awt, and more.

When using these, as you know, you need to add import statements to the top of your program.

You can import all classes in a given package:

import java.util.*;

or only those you intend to use:

CSIS 225 Advanced Programming Spring 2021

import java.util.ArrayList;
import java.util.Scanner;

Early in the semester, we discussed the advantages of the latter specification, and we will revisit
that soon.

Any computer capable of compiling and running Java programs should be able to import classes
from the Java standard API without additional installation or configuration steps.

Other packages can come from external sources, and might require additional installation of the
package or packages (often as a “Jar File”, which we will look at later) and configuration of your
Java IDE and/or run-time system.

As an example, consider the Java packages in the Apache Commons: https://commons.
apache.org/

Notice that the packages here have names that start with the Internet domain name of the site, but in
reverse order. So the SimpleEmail class is specified by its fully qualified name org.apache.
commons.mail.SimpleEmail.

If we had a program that wished to use this class, we could import the entire package:

import org.apache.commons.mail.*;

or import just that one class that will be used:

import org.apache.commons.mail.SimpleEmail;

or, the program could use the fully qualified name every time the class name is needed in the
program:

org.apache.commons.mail.SimpleEmail e =
new org.apache.commons.mail.SimpleEmail();

and not have any import statement for it at all.

Not all packages follow the domain name convention. The structure package, which some of
you might have encountered in previous courses, and which we looked at briefly in this class
as an example of a good class hierarchy, simply places all of its classes and interfaces into the
structure5 package. Given that it’s developed in the Computer Science department at Williams
College, convention would suggest that the package’s fully qualified name should be something
like edu.williams.cs.structure5. However, as it is intended as an educational pack-
age rather than something to be used in production, commercial projects, this is not likely to be
problematic.

2

CSIS 225 Advanced Programming Spring 2021

Using Packages
Java packages allow developers to group related classes together.

Java packages allow multiple classes with the same name to be used together in a single Java pro-
gram. For example, within the Java API, the name Timer refers to (at least) three different classes:
java.util.Timer, javax.management.timer.Timer, and javax.swing.Timer.
Timer is a perfectly reasonable name for each of these classes. But consider a program that has
need to use a java.util.Timer, but also uses some classes from javax.swing.

https://github.com/SienaCSISAdvancedProgramming/TwoTimers

Which class does the name Timer refer to in main?

Try to compile it to find out how Java handles this.

To avoid ambiguity, we could explicity construct a java.util.Timer object. But better yet,
we should avoid this conflict in the first place here by not using wildcard imports.

Including lines like

import java.util.*;

in your programs as a beginning programmer is generally accepted, and allows beginners not to
worry too much about the imports needed for their Scanners and Randoms and other classes
they are using.

However, as programs become more complex, it is the best practice to avoid wildcard imports and
to list every class or interface you need on a separate import statement line.

In those cases where ambiguity remains: suppose your program really did need to use two differ-
ent Timer objects, one a java.util.Timer and one a javax.swing.Timer, you would
need to use their fully qualified names (which would additionally allow you to omit the import
statements, if you wished).

Protection Levels
Now that we are thinking about Java code as organized into packages, we can more fully understand
the protection levels Java provides for classes, methods, and variables.

Read https://docs.oracle.com/javase/tutorial/java/javaOO/accesscontrol.
html for the official explanation.

Creating your own Packages
Most of the code you have written to this point is likely in the default package. This is fine in many
cases, but at times you will want to write code that you put into your own packages.

This is accomplished using the package keyword. Many of you have seen this keyword intro-

3

CSIS 225 Advanced Programming Spring 2021

duced into your programs by BlueJ when you have package.bluej files in multiple places in
a directory hierarchy.

When developing large projects, breaking the Java code into packages that contain related classes
and interfaces is helpful for code organization.

A very important time to use a package, however, is when developing a set of classes and interfaces
that are intended to be generally useful to many other Java programs.

As an example, we will look at a small package that provides a couple of classes that will “factor
out” some of the boilerplate code we’ve seen over and over in our programs that use graphical
animations, and a version of one of our earlier examples that makes use of these classes.

https://github.com/SienaCSISAdvancedProgramming/ThreadGraphicsPackage

The first thing to notice in this repository is the directory structure necessitated by the fact that
we are using a properly qualified package name for the abstract classes. The package name is
edu.siena.csis225.threadgraphics, so inside of a src directory in the repository,
there is a path to the code edu/siena/csis225/threadgraphics.

In that directory, we find the two classes that make up this package: ThreadGraphicsCon-
troller and AnimatedGraphicsObject.

The first line in each

package edu.siena.csis225.threadgraphics;

indicates that this class is part of the given package.

ThreadGraphicsController is a concrete base class that implements the common func-
tionality we often see in the class that has a main method to start the program and a run method
to set up the GUI, including a JPanelwith an overridden paintComponentmethod that draws
our graphics. It also includes code to manage a list of AnimatedGraphicsObject objects,
drawing them when necessary and removing them from the list when they’re done with their ani-
mations.

AnimatedGraphicsObject is an abstract class that represents the individual animated graph-
ics objects.

There are some explanatory comments in each class. Here are some particular things to notice in
each, some of which are specific to these being in a package, others general comments about the
design of these classes.

For ThreadGraphicsController:

• We can implement Runnable as usual, but do not extend a class like MouseAdapter,
since as a more general purpose base class, we don’t know which mouse methods, if any, it
will use. Or maybe it uses keyboard events. So those details will be left to the derived class.

• The first two instance variables are ones we have seen in the corresponding class of many of
our graphical animation examples. We have a list of animated objects, in this case of type

4

CSIS 225 Advanced Programming Spring 2021

AnimatedGraphicsObject that we will look at next, and the JPanel in which our
graphics will be drawn.

• We’ll come back to the next two instance variables when we look at the constructor.

• We saw recently that our list of animated graphical objects might be modified not only in
our paintComponent method, but also by event handlers, and that this can lead to race
conditions. So we introduce an instance variable lock to serve as an explicit lock protecting
the critical sections where the list variable might be modified.

• We’ll also come back to the thisTGC variable.

• The constructor is needed here to accept the window label and size that we’ve been hard-
coding into the run method of each of our applications. Instead, we will have the derived
class that knows what the window should be named and how big we would like it to be, call
this constructor to pass that information in. It’s stored in instance variables, and used just
below near the start of the run method.

• Much of the rest of the run method looks very familiar from all of our copying and pasting
from example to example (a leading indicator that inhertiance is needed), but there are a few
items that depend on the specifics of the application that we need to deal with.

– In the paintComponent method, we sometimes need to draw some static back-
ground (e.g., the scene in the falling snow) or need to have some graphical feedback
for mouse events (e.g., the sling line in the ball tosser or the rubber-banding lines and
triangles in the Sierpinski gasket). These depend on the actual application, so these are
to be done by a paint method, defined below. Note: since the paintComponent
method is a method of the JPanel, not the ThreadGraphicsController, the
this reference in scope here refers to the JPanel. We work around this by storing
the tgc’s this reference in an instance variable thisTGC for use here.

– The rest of paintComponent is our now-familiar loop to visit each animated object
and either paint it, or remove it from the list if it’s done.

– Back in the run method, we have some tasks that again are application-dependent.
So we move them into methods that can be overridden by the derived class, which
knows the details. buildGUI, by default, adds the panel to the frame. But we know
that some applications have Swing components and hierarchies of panels. In those
cases, the application would override buildGUI. Similarly, different applications use
different event handlers, and those event handlers need to be added. This is done by
overriding the default (empty) addListeners method.

– The run method wraps up with the construction of our list, and the last couple lines to
get the window displayed.

• The remainder of ThreadGraphicsController has the default implementations of
the three methods mentioned above: paint and addListeners, which do nothing by
default, and buildGUI, which just adds the panel to the frame by default.

5

CSIS 225 Advanced Programming Spring 2021

For AnimatedGraphicsObject:

• Since there is so much variety in what animated objects look like and what “animation”
means in different contexts, there is not as much we can factor out in AnimatedGraph-
icsObject.

• We extend Thread here, since all of our animated objects would do so, and they’ll need to
extend AnimatedGraphicsObject.

• We have seen two instance variables in all of our animated objects, done and container,
and those are declared here. Note that we change their protection level to protected so
they can be accessed by the derived classes.

• The AnimatedGraphicsObject constructor just sets the container. Derived classes
should either call this constructor from theirs or have their constructor set container.

• The next method is a convenience method that we can call to have a thread sleep without
having to wrap it up in a try-catch block. Note that it is declared as static, since it
does not need access to instance variables.

• We include the done method we have seen in pretty much every animated object.

• We know all AnimatedGraphicsObject objects will need a paint method, as it’s
called from ThreadGraphicsController’s runmethod on each object in the list. But
we know nothing about what the paint method needs to do, so it’s declared as abstract.

• Finally, we override the Thread’s run method with an abstract run method here, forc-
ing derived classes to provide one.

To compile the classes in our package, we will use the Java compiler at the command line. Nor-
mally, to do this, we would make sure our working directory is the same one that contains our
source files, and issue the javac command. However, when working with packages, we need
to have our working directory be at the top of the package’s path. In this case, that’s the src
directory. Once there, we can compile the two Java files:

javac edu/siena/csis225/threadgraphics/*.java

We will see soon how we can package the resulting class files into a “Jar file”, so we can use the
package without having to put its source code tree into our project.

To see how these classes can help simplify a specific application, let’s look in the src/examples/
BallTosser directory. The program here has identical functionality to our earlier BallTos-
ser example, but has been modified to use the code from our new package.

For convenience in this particular repository, the two files for the Ball Tosser program are in pack-
age example.BallTosser. Both then import all (2) classes from the package we just looked
at:

6

CSIS 225 Advanced Programming Spring 2021

import edu.siena.csis225.threadgraphics.*;

Now let’s look at what has changed in the code between the original versions of these files and the
ones that use the package.

First, BallTosser:

• The class now extends ThreadGraphicsController and implements the two mouse
event interfaces. We can no longer extend MouseAdapter, since we need to extend
ThreadGraphicsController. This only means we will need to provide dummy im-
plementations of the mouse event handlers we aren’t using. It no longer needs to implement
Runnable because ThreadGraphicsController does that (though it would cause
no harm to repeat it here).

• We are able to remove the list and panel instance variables, as those are inherited from
ThreadGraphicsController.

• We introduce a constructor, which calls the ThreadGraphicsController constructor
with appropriate parameters for this application.

• The run method is no longer needed, as the ThreadGraphicsController one we in-
herited has all of the needed functionality. However, we do need to provide implementations
for two of the three methods ThreadGraphicsController’s run method calls.

– paint is needed to draw our sling line while the mouse is being dragged.

– addListeners adds the listeners for our mouse events.

– We do not need to override buildGUI, as the default implementation is sufficient
here.

• The mouse event handlers are unchanged, except that we need to provide the empty methods
for the ones we don’t use, to satisfy the interfaces.

• No change is needed to main.

And now, BouncingGravityBall:

• BouncingGravityBall now extends AnimatedGraphicsObject instead of Thread.

• We still need all of our constants and all except the two instance variables that are now
defined in AnimatedGraphicsObject.

• The only change to the constructor is that instead of assigning container directly, we call
the superconstructor to do it.

• paint is unchanged.

7

CSIS 225 Advanced Programming Spring 2021

• The only change in run is to take advantage of the sleepWithCatch method.

• We do not need an implementation of done, it is inherited.

To compile this example, we again need to be in the src directory, and we can issue the command:

javac example/BallTosser/*.java

And finally we can run it from the src directory:

java example/BallTosser/BallTosser

Creating a Jar File
Java developers can share code they’ve developed, typically as packages, by creating and using Jar
Files (Java ARchive Files). These files group together a collection of .class files and can then
be provided to the Java compiler and run-time system as a place to look to find other classes used
by the program being compiled or executed.

To create a Jar file for our package, we can run the jar command from the command-line while
in the src directory:

jar cf threadgraphics.jar edu/siena/csis225/threadgraphics/*.class

This command creates (the c) in a file (the f) named threadgraphics.jar an archive of all of
the .class files specified in the remainder of the command. In this case, it’s the three .class
files generated from our two .java files that make up the package.

We can see what’s archived in a file, also using the jar command, but with different parameters:

jar tf threadgraphics.jar

The output would look something like this:

META-INF/
META-INF/MANIFEST.MF
edu/siena/csis225/threadgraphics/AnimatedGraphicsObject.class
edu/siena/csis225/threadgraphics/ThreadGraphicsController$1.class
edu/siena/csis225/threadgraphics/ThreadGraphicsController.class

8

CSIS 225 Advanced Programming Spring 2021

The first two lines indicate some housekeeping information that the Jar file uses to track its con-
tents, then the last three list the three .class files that have been archived in this Jar file.

This Jar file can then be copied to other projects or added to the standard set of Jar files your
development environment searches when you import and use classes outside of your project.

As an example of how this is done at the command line, we look at a new program that (among
other things) demonstrates how to use the Jar file of the threadgraphics package in another
project without copying over the source code.

https://github.com/SienaCSISAdvancedProgramming/Breakout

We will look at what this program is all about later, but for now, we focus on how it uses the Jar
file, and how we need to change the way we compile things.

That repository has a copy of the threadgraphics.jar file. It also has an exciting imple-
mentation of a “Breakout” game, which has its main method in the class Breakout.

If we try to compile this project in our usual way (or if you tried to compile it in BlueJ), it will not
work. On my Mac, the command:

javac *.java

gives 22 errors, one of the first of which is:

Breakout.java:1: error: package edu.siena.csis225.threadgraphics does not exist
import edu.siena.csis225.threadgraphics.*;

This makes sense. We haven’t told javac that it should look in threadgraphics.jar for
classes in addition to its usual places. Those “usual places” include the Jar files for the standard
Java API, and our current directory.

We can add to the places to look by adding an option to our compile command:

javac -cp .:./threadgraphics.jar *.java

(You might have to use semicolons instead of colons for separation and enclose the argument to
-cp in double quotes on Git Bash.)

The -cp option says to replace the classpath with one that includes ., the Unix way to refer to the
current directory, and the threadgraphics.jar file. Now, no errors!

The same situation arises when we try to run in our usual way with:

java Breakout

This gives an error due to a run-time exception:

9

CSIS 225 Advanced Programming Spring 2021

Error: Could not find or load main class Breakout
Caused by: java.lang.NoClassDefFoundError: edu/siena/csis225/threadgraphics/ThreadGraphicsController

Just as we needed to use a command-line parameter to javac so it could find the Jar file, we need
to do this when we launch the Java Virtual Machine with the java command.

java -cp .:./threadgraphics.jar Breakout

If we want to avoid having to do that on each java and javac command, we can set an environ-
ment variable that will remember the new classpath.

export CLASSPATH=.:threadgraphics.jar

The above should work in Git Bash and in standard configuration Mac Terminal windows. The
java and javac commands will check the value of this environment variable and use its value
as the classpath if it exists.

Java IDEs typically have a way to specify that individual Jar files or entire directories of Jar files
be included in their search path for a project. For example, in BlueJ, under the Preferences, you
can go to the Libraries tab and add Jar files.

10

