
Computer Science 225
Advanced Programming
Siena College
Spring 2020

Topic Notes: Interfaces

You have worked in your earlier courses and at the start of this one with Java interfaces. A Java
interface defines a set of methods that must exist in any Java class that implements that interface.
This is a key tool in good object-oriented design.

A class that implements an interface in Java specifies this in its class header. For example:

public class ArrayList<E> implements List<E>

This topic is also only tangentially related to an upcoming topic: Java’s Graphical User Interface
mechanisms. That is, while this topic “Interfaces” and the upcoming topic “User Interfaces” share
part of their name, the connection between the two topics is not very strong.

The advantage as we have seen so far is that objects of any class that implements an interface can
be used interchangeably as long as the only methods used are those defined in the interface. We
saw in lab one way that this helps us to write highly reusable code when we wrote a a method that
operates on a java.util.List that can work with any type list that implements the interface,
including ArrayList, LinkedList, and Vector.

We can do something similar with the Iterator interface. The following method can find the
maximum value returned by an Iterator<Integer> no matter where that Iterator was
created:

public static int max(Iterator<Integer> i) {

// we require at least one element for this to make sense
int result = i.next();
while (i.hasNext()) {

int x = i.next();
if (x > result) {

result = x;
}

}
return result;

}

In your study of custom classes and abstract data types, you saw that an important goal was to
hide the details of how the behavior of a class was implemented by keeping its instance variables
private and then defining public methods that provided the ability to change or determine a limited



CSIS 225 Advanced Programming Spring 2020

set of aspects of the object’s state. This permits the author of such a class to make internal changes
without breaking existing code that makes use of that class, as long as the public interface of the
class does not change. For example, suppose you have an implementation of a linked list that did
not maintain a variable that tracks the number of elements it contains (so its size method needs to
walk down the list to count the number of elements it contains). You could add a variable to track
this, make sure it is updated by all methods that modify the number of elements in the list, and
replace the size method with a much more efficient implementation that just returns the value of
the variable. Users of the class would not need to make changes to their code, but would benefit
from the new, more efficient, size method (however we should be mindful that the structure
would increase slightly in size and the additional code to maintain this variable would need to be
executed on every list modification).

Other interfaces you have seen so far include Comparator and Comparator. We will soon use
other interfaces from the standard Java API.

Writing Interfaces
Java allows us to define and use our own interfaces. The syntax is demonstrated in the AnimalInterface
example.

• Like a class definition, an interface specification is constructed out of a header followed by
a body enclosed within curly braces.

• The body consists of a list of method headers. Each header is terminated by a semicolon
(rather than being followed by a method body).

A few points to note from this example:

• Each class includes the implements Animal qualifier in its class header.

• By doing this, it is required to provide the four methods listed in the interface definition.

• When implementing the methods required by an interface, it is good programming pracice
to include an @Override annotation before the method header. It is not an error to leave
them out, but would be an error to include the annotation if you are not actually overriding
a method. We will talk much more about overriding and related topics soon as we study
inheritance.

• The classes that implement the interface can define any other methods they wish. In each
case, there is also a toString method, and in the Dog class, we also add a dog-specific
bark method.

• In the Zoo class, we take advantage of the interface by constructing an ArrayList<Animal>
which can then accept instances of any class that implements Animal.

• When we loop over and print out each Animal, we see that it chooses the appropriate
toString method and numLegs method.

2



CSIS 225 Advanced Programming Spring 2020

• When we retrieve the elements from the ArrayList<Animal>, they are known to be of
type Animal. If we want to check to see if an Animal is actually one of the specific animal
types, we can use the instanceof operator. We do this to determine which Animal
objects which are of type Dog, and for ones that are, we cast the reference to one of type
Dog, at which point we can call the Dog-specific method bark.

• The cast in the example is guaranteed to be successful, since we just checked to make sure
the Animal is an instance of Dog before casting. However, Java still needs to check, and
if a cast is encountered where the object referenced is not actually an instance of the type in
the cast, Java will throw a ClassCastFailedException.

Anonymous Classes
You might have noticed that many classes that implement simple interfaces, like Iterator or
Comparator, tend to be short and in many cases are used only once. There are a few options
about how and where such implementations can be defined.

• The class can be defined as public class in its own .java file. This is what you did for
the Comparator in Lab 1: IntegerAbsComparator.

• The class can be defined as a non-public class in the same file where it is used. This is what
was done for the existing Iterator and the one you added in the SimpleLinkedList
class also in Lab 1. The details of the Iterator are visible only within the same .java
file. It is returned as an Iterator from the list’s iteratormethod. The same is done for
the LegsComparator in the ZooArray program in the AnimalInterface example.

• An anonymous class can be used for this purpose. Here, the object is constructed and its
required methods defined exactly where needed, without introducing a new class name or
any variables or methods. This is done for the Comparator that compares Animals by
weight in the ZooArray program in the AnimalInterface example.

Implementing Multiple Interfaces

• A class can implement zero or more interfaces.

• A class that implements multiple interfaces separates the intefaces that it implements by
commas.

• The fact that Java allows a class to implement multiple interfaces introduces the potential for
name collisions when more than one interface includes methods of the same name.

– If the methods have different signatures, the methods are overloaded.

3



CSIS 225 Advanced Programming Spring 2020

– If they have the same signature and return type, the methods are collapsed into one.
That is, a single matching implementation satisfies all such interfaces.

– If they have the same signature but different return types, it will produce a compilation
error.

We will see more about interfaces as we continue to study Java’s support for object-oriented design.

4


