
Computer Science 225
Advanced Programming
Siena College
Spring 2020

Topic Notes: Inheritance

Our next topic is another that is fundamental to object-oriented design: inheritance.

Inheritance allows a programmer to take a Java class and extend or modify its functionality without
changing the original class.

Overloaded Methods
Before we get into the details of inheritance, we will first recall the concept of overloading of
constructor and method names.

Overloading is when a program has multiple constructors or methods of the same name. Java will
determine which of the overloaded functions is called based on the signature (i.e., the parameter
list).

This kind of overloading is known as ad hoc polymorphism.

You have likely used this in your programs. The SimpleLinkedList we have worked with has
overloaded methods.

PointOverload has a class that overloads its constructors and the method distance to com-
pute the distance from this Point to another Point, or the distance from this Point to a given
x,y-coordinate pair, or the distance from this Point to the origin, all using the method name
distance.

Inheritance
Inheritance allows a Java programmer to write classes that build upon the functionality of others.

Some terminology:

• We say that the subclass or extended class extends the superclass or base class.

• A derived class of a base class is any class which has the base class as an ancestor. That is,
there is some series of superclass/subclass relationships that connect the base class with the
derived class.

• Inheritance defines an IS-A association between the subclass and its superclass. If A extends
B, then B “IS-A” A.

As a simple example, we extend the Point class from the previous example to include a color.



CSIS 225 Advanced Programming Spring 2020

See Example: ColorPoint

The ColorPoint class has three data members: the x and y values that are inherited from
Point and color which is added by ColorPoint. It also inherits methods from Point.

Note that the toString method is overridden by ColorPoint.

Note that we needed to change the protection of the x and y fields from private to protected
to allow them to be available in the toString method of ColorPoint.

java.lang.Object

Every Java class has a unique superclass hierarchy that ends with java.lang.Object. Every
class inherits from Object implicitly (i.e., no extends is needed).

Some programming languages allow multiple inheritance, where one class can explicity extend
multiple other classes, but Java disallows this. Every class (except java.lang.Object) ex-
tends exactly one other class. That superclass is Object unless otherwise specified.

Multiple inheritance can be a useful tool to programmers, but it significantly complicates the com-
pilers and run-time systems of languages that support it. The designers of Java chose not to include
this feature.

protected and default
We now also need to consider more completely the differences among Java’s qualifiers for access
control on variables and methods:

public members can be accessed by anyone

private members can be accessed only within the class where defined

protected members can be accessed within the class where defined, by other classes in the
same package (a topic we’ll discuss in more detail soon), and by any derived classes

Default (no qualifier) members can be accessed within the class where defined and by other
classes in the same package

UML and Inheritance
We will at times this semester be using diagrams to design and visualize class hierarchies. The
Unified Modeling Language (UML) (see On the web: UML on Wikipedia at
https://en.wikipedia.org/wiki/Unified_Modeling_Language for a summary,
On the web: the complete UML specification at
https://www.omg.org/spec/UML/2.5.1/PDF for almost 800 pages of details) is a soft-
ware engineering modeling language that includes a specific diagram format for class diagrams
(On the web: Wikipedia at
https://en.wikipedia.org/wiki/Class_diagram).

2



CSIS 225 Advanced Programming Spring 2020

The superclass/subclass relationship is shown in a UML class diagram by a hollow arrow from the
subclass to the superclass. This indicates the “IS-A” relationship. We previously saw that a regular
arrow indicates a “HAS-A” relationship.

Since the superclass is also shown in the diagram, there is no need to replicate the inherited mem-
bers in the diagram of the subclass.

For our earlier example, this is the UML class diagram:

Point

# x: double
# y: double

+ distance(double,double): double
+ distance(Point): double
+ distance(): double
+ toString(): String

ColorPoint

+ color: Color

+ toString(): String

Extends

Subtypes
A subclass is a specialization of its base class. However, objects of the subclass still are and can
be treated as objects of the base class.

We say that the subclass determines a subtype of the type of the superclass.

An object of a subtype can be used anywhere that an object of its supertype is expected.

Java will perform a type conversion when object types are not precise.

• A widening conversion converts a subtype to one of its supertypes.

• A narrowing conversion converts a supertype to one of its subtypes. This is sometimes
referred to as downcasting.

Let’s examine subtype polymorphism through a series of examples.

Suppose we have a base class Student and two derived classes Undergraduate and Graduate:

3



CSIS 225 Advanced Programming Spring 2020

class Student { ... }
class Undergraduate extends Student { ... }
class Graduate extends Student { ... }

We can store references to either subtype in a variable of the base class type:

Student s1, s2;
s1 = new Undergraduate(); // valid widening
s2 = new Graduate(); // valid widening

Now suppose we have a variable of one of the subclasses:

Graduate s3;

s3 = s2; // compilation error, cannot guarantee downcast
s3 = (Graduate) s2; // OK, since s2 is a Graduate
s3 = (Graduate) s1; // Compiles, but run-time cast failure

We can avoid a potential run-time failure by checking the type of an object with the instanceof
keyword:

if (s1 instaceof Graduate) {
// perform safe downcast
s3 = (Graduate) s1;

}

Overriding Methods
Inheritance brings up a variety of issues that can be powerful and in some cases, potentially prob-
lematic.

We saw an example above where a derived class (ColorPoint) provided a toString method
that was intended to override the toString method provided by its base class (Point). Let’s
look at that idea a bit more closely next.

A method in a subclass will override a method inherited from its superclass if it has the same
method prototype: the same name and the same signature (i.e., parameter list).

Note that this is different from overloading, where the same class provides multiple methods (or
constructors) of the same name but with different signatures.

We looked earlier at the concept of subtype polymorphism. In the example above, variables of type
Student could be used to refer to either Student objects, or objects of types that are derived
from Student: Undergraduate and Graduate.

4



CSIS 225 Advanced Programming Spring 2020

Let’s extend that example a bit, by adding a few more classes, Freshman, which is an extension
of Undergraduate, and Phd, which is an extension of Graduate, and providing a method
getName that prints out the student’s name, annotated with the type of student, where applicable:

Example: Overriding

Even though all of the getName method calls are using a reference of type Student, the
getName method that gets called is determined by the type of the object, not of the reference.
Java uses dynamic binding of method calls to accomplish this.

In some cases, this is straightforward: the method is defined in the class definition corresponding
to the object itself. However, in cases like the object of type Freshman, there is no getName
method defined in that class. So it must locate and execute an appropriate getName method fur-
ther up the class hierarchy. When we call the getName method of the object of type Freshman,
it first checks its direct superclass, Undergraduate. It finds the method there, and uses it. If
Undergraduate did not override the getName method, Java would then continue up the class
hierarchy, and use the getName method in class Student.

In class, we will draw a UML class diagram for this example.

The @Override Annotation
As we discussed in our examples of Java interfaces, the @Override annotation not required, but
is considered good programming practice for each method that is intended to override a method of
an ancestor in its class hierarchy. Refer to the previous example to see it in use.

The main advantage of using the @Override annotation is that it can help detect programmer
errors such as method name misspellings and method signature mismatches. For example, suppose
we mistakenly called our method getname in the Phd class. The @Override annotation would
trigger a compile error (try it, it’s fun!). Without the @Override annotation, getname would
be defined as a new method of Phd and it would inherit its getName method from Graduate.
The mistake would need to be detected at run time.

You will be expected to include @Override annotations as appropriate in your programs (and
please point out when you notice one missing in a class example).

Abstract Classes
So far, we have seen interfaces and “regular” classes, which we will call concrete classes. There
is a level between these called an abstract class, which has some method definitions like a regular
class and some method signatures that must be implemented by subclasses.

For example, in our example with the animals, we could make the Animal interface into an
abstract class and include the complete functionality related to animal weights at that level.

AnimalAbstract

Key points about an abstract class:

5



CSIS 225 Advanced Programming Spring 2020

• The class header is preceded by the keyword abstract.

• Methods that are not implemented by are required to be implemented by subclasses are also
preceded by the abstract keyword.

• Abstract classes can declare instance variables and use them in its method definitions.

• An abstract class can implement zero or more interfaces and may extend one abstract class
or concrete class.

• Like interfaces, abstract classes cannot be instantiated.

It is possible for a class that extends an abstract class to override methods defined in the abstract
class, in case there is a more efficient way to do some of these things when an actual implementa-
tion is developed.

A frequent use of an abstract class is to “factor out” implementation of methods that happen to be
the same for multiple implementations of an interface.

Another use of an abstract class is to provide default implementations of methods that can be
implemented in terms of other methods.

Concrete classes extend exactly one concrete or abstract class (that class is java.lang.Object
if not specified).

Case Studies
We will examine the class hierarchy of Bailey’s Structure Package as it implements list structures
and graph structures.

6


