
Computer Science 225
Advanced Programming
Siena College
Spring 2020

Topic Notes: Graph Structure Design

We have seen that Java’s object-oriented constructs: interfaces, abstract classes, inheritance with
overriding, etc., can be used to design a collection of data structures, in particular, lists.

Next, we will consider the design of structures to represent graphs.

Graphs
A graph G is a collection of nodes or vertices, in a set V , joined by edges in a set E. Vertices have
labels. Edges can also have labels (which often represent weights). Such a graph would be called
a weighted graph.

The graph structure represents relationships (the edges) among the objects stored (the vertices).

For a tree, we might think of the tree nodes as vertices and edges labeled “parent” and “child” to
represent nodes that have those relationships.

H

A

B
C

D

E

F

G

4

7

1

3

5

8

11
2

• Two vertices are adjacent if there exists an edge between them.

e.g., A is adjacent to B, G is adjacent to E, but A is not adjacent to C.

• A path is a sequence of adjacent vertices.

e.g., A-B-C-F-B is a path.

• A simple path has no vertices repeated (except that the first and last may be the same).

e.g., A-B-C-E is a simple path.



CSIS 225 Advanced Programming Spring 2020

• A simple path is a cycle if the first and last vertex in the path are same.

e.g., B-C-F-B is a cycle.

• Directed graphs (or digraphs) differ from undirected graphs in that each edge is given a
direction.

• The degree of a vertex is the number of edges incident on that vertex.

e.g., the degree of C is 4, the degree of D is 1, the degree of H is 0.

For a directed graph, we have more specific out-degree and in-degree.

• Two vertices u and v are connected if a simple path exists between them.

• A subgraph S is a connected component iff there exists a path between every pair of vertices
in S.

e.g., {A,B,C,D,E,F,G} and {H} are the connected components of our example.

• A graph is acyclic if it contains no cycles.

• A graph is complete if every pair of vertices is connected by an edge.

There are two principal ways that a graph is usually represented:

1. an adjacency matrix, or

2. adjacency lists.

As a running example, we will consider an undirected graph where the vertices represent the states
in the northeastern U.S.: NY, VT, NH, ME, MA, CT, and RI. An edge exists between two states if
they share a common border, and we assign edge weights to represent the length of their border.

We will represent this graph as both an adjacency matrix and an adjacency list.

In an adjacency matrix, we have a two-dimensional array, indexed by the graph vertices. Entries
in this array give information about the existence or non-existence of edges.

We represent a missing edge with null and the existence of an edge with a label (often a positive
number) representing the edge label (often representing a weight).

Adjacency matrix representation of NE graph
NY VT NH ME MA CT RI

NY null 150 null null 54 70 null
VT 150 null 172 null 36 null null
NH null 172 null 160 86 null null
ME null null 160 null null null null
MA 54 36 86 null null 80 58
CT 70 null null null 80 null 42
RI null null null null 58 42 null

2



CSIS 225 Advanced Programming Spring 2020

If the graph is undirected, then we could store only the lower (or upper) triangular part, since the
matrix is symmetric.

An adjacency list is composed of a list of vertices. Associated with each each vertex is a linked list
of the edges adjacent to that vertex.

EdgesVertices

NY

VT

NH

ME

MA

CT

RI

MA/54 CT/70VT/150

NY/150 NH/172 MA/36

VT/172 ME/160 MA/86

NH/160

NY/54 VT/36 NH/86 CT/80 RI/58

NY/70 MA/80 RI/42

MA/58 CT/42

In some cases, a matrix representation is more desirable. In other cases, it is the list representation.
It depends on the density of the graph and which graph operations need to be most efficient for the
task at hand.

Developing a Design for Graph Structures
In class, we will break down the objects and methods needed, then consider how to make use of
interfaces, abstract classes, and concrete classes.

Some key points:

• edges and vertices have labels of arbitrary types, specified by type parameters

• vertex labels must be unique, edge labels need not be

• functionality is driven by the kinds of things needed by various graph algorithms:

– adjacency information

– visit all vertices/edges

– counts/degrees

• add/remove vertices and edges in ways that do not invalidate the structure

3



CSIS 225 Advanced Programming Spring 2020

• consider both directed and undirected graphs

• consider both adjacency matrix and adjacency list implementations

An Example: Bailey’s Java Structures Graph Implementations
Some key points of Bailey’s design and implementation:

• Interface Graph defines the basic operations

• Graph is treated as a Structure, so has common method names with some other struc-
tures (apply generally to vertices, not edges)

• Vertex and Edge are concrete classes, Vertex is extended by GraphListVertex and
GraphMatrixVertex to support adjancency list and adjacency matrix implementations

• Abstract classes GraphMatrix and GraphList each implement the Graph interface

• Four concrete classes represent the combinations of directedness and underlying implemen-
tation: GraphMatrixDirected, GraphMatrixUndirected, GraphListDirected,
GraphListUndirected

• Hash tables allow efficient mapping from vertex labels to Vertex objects

4


