
Computer Science 225
Advanced Programming
Siena College

Spring 2017

Topic Notes: Abstract Classes and Interfaces

Abstract classes

Recall our earlier example:

See Example: Overriding

Here, we saw that the implementation of the getName method in class Student was sometimes,

but not always overridden by implementations in classes that extended Student.

Suppose instead that we wanted to require that all classes that extend the Student class would

provide their own specialized version of getName. If we include an actual implementation in the

Student class, there is no way to require this.

However, we can replace the version in Student with an abstract method. An abstract method’s

header includes the abstract keyword, and does not include an implementation:

protected abstract void getName();

Once we have done this, class Student must also be declared to be abstract class by adding the

abstract keyword to its class header.

abstract class Student

See Example: AbstractClass

Some notes about abstract classes:

• An abstract class in Java is one which is allowed to include abstract method headers.

• An abstract class can still include concrete methods (i.e., those with full implementations).

• An abstract class can contain declarations of instance and class variables.

• Any concrete class (i.e., non-abstract class) that extends an abstract class will be required to

provide an implementation for each abstract method. It would still be allowed to override

any non-abstract methods.

• Since an abstract class is not a complete class definition, a program cannot instantiate an

abstract class.



CSIS 225 Advanced Programming Spring 2017

• It is good practice to include an @Override annotation for concrete implementations of

abstract methods.

• Abstract classes are very useful to “factor out” some common implementation from a set of

related classes, while requiring some additional methods whose implementations are neces-

sarily specific to the derived classes.

In a UML class diagram, an abstract class is indicated with the <<abstract>> annotation with

the class name, and abstract methods are indicated by italics.

Interfaces

Recall that Java does not allow multiple inheritance. Every class (except Object) must extend

exactly one other. If a class does not explicity extend some class, it implicitly extends Object.

We also have seen that there are times when single inheritance does not capture the object hierarchy

as well as we might like. Recall the huge list of shapes from a recent lab. All squares are rhombuses

and all squares are rectangles, but it is not the case that either all rhombuses are rectanges or all

rectangles are rhombuses. For the class diagram there, you had to choose one or the other.

Java’s interface mechanism can help in these situations. An interface in Java is essentially a “com-

pletely abstract class” – it contains a list of method headers but no implementations. However, the

syntax for both the definition and usage of interfaces differs from that of classes:

public interface MyInterface {

void aMethod(int i);

}

public class MyClass implements MyInterface {

public void aMethod(int i) {

//implementation

}

}

Note the interface keyword in place of the class keyword in the definition of the interface,

and the implements keyword in place of the extends keyword in the usage of an interface.

Essentially, for a class A that implements an interface B, A is promising that it will provide im-

plementations of all of the methods listed in B. Not to do so would result in a compile error. This

allows a programmer to store a reference to an object of type A in a variable of type B, but will

mean that the object when used through the variable of type B is restricted only to those methods

listed in the B interface.

Some notes about interfaces in Java:

• A class can implement zero or more interfaces.

2



CSIS 225 Advanced Programming Spring 2017

• A class that implements multiple interfaces separates the intefaces that it implements by

commas.

• A concrete class that implements one or more interfaces must implement all methods defined

in the interface.

• An abstract class that implements one or more interfaces can omit some or all of the im-

plementations, but it essentially inherits any omitted methods from the interface(s) as new

abstract method.

• Interfaces can extend other interfaces (using the extends keyword)

Advantages of interfaces:

• They encourage smart application design

• They promote readability

• They promote maintainability

• They allow flexibility, offering many of the benefits of multiple inheritance without the added

language complexity (See: C++)

Some rules to keep in mind about interfaces:

• An interface cannot extend a class, only another interface.

• Interface methods are implicitly abstract.

• Interface methods may not be declared as final, since they must be implemented.

• Interface methods are implicitly public (as opposed to default protection).

• Interfaces can only define variables that are public, static, and final.

The fact that Java allows a class to implement multiple interfaces introduces the potential for name

collisions when more than one interface includes methods of the same name.

• If the methods have different signatures, the methods are overloaded.

• If they have the same signature and return type, the methods are collapsed into one. That is,

a single matching implementation satisfies all such interfaces.

• If they have the same signature but different return types, it will produce a compilation error.

3


