
Computer Science 225
Advanced Programming
Siena College

Spring 2017

Topic Notes: Inheritance

Our next topic is another that is fundamental to object-oriented design: inheritance.

Inheritance allows a programmer to take a Java class and extend or modify its functionality without

changing the original class.

You have seen at least one example of inheritance this semester. In Lab 3, the HelloApplet

class had this class header:

public class HelloApplet extends JApplet

This means that the class HelloApplet “inherits” the functionality of the class JApplet, and

can then modify it as appropriate.

(There seem to be dozens of short answer exam questions just screaming out from these topics,

doesn’t there?)

Overloaded Functions

Before we get into the details of inheritance, we will first consider the concept of overloading of

constructor and method names.

Overloading is when a program has multiple constructors or methods of the same name. Java will

determine which of the overloaded functions is called based on the signature (i.e., the parameter

list).

This kind of overloading is known as ad hoc polymorphism.

You have likely used this in your programs, and we saw overloaded constructors in an example

earlier this semester:

See Example: Point

Here is a similar example that overloads the method distance to compute the distance from this

Point to another Point, or the distance from this Point to a given x,y-coordinate pair, or the

distance from this Point to the origin, all using the method name distance.

See Example: PointOverload

Inheritance

Inheritance allows a Java programmer to write classes that build upon the functionality of others.

Some terminology:



CSIS 225 Advanced Programming Spring 2017

• We say that the subclass or extended class extends the superclass or base class.

• A derived class of a base class is any class which has the base class as an ancestor. That is,

there is some series of superclass/subclass relationships that connect the base class with the

derived class.

• Inheritance defines an IS-A association between the subclass and its superclass. If A extends

B, then B “IS-A” A.

As a simple example, we extend the Point class from the previous example to include a color.

See Example: ColorPoint

The ColorPoint class has three data members: the x and y values that are inherited from

Point and color which is added by ColorPoint. It also inherits methods from Point.

Note that the toString method is overridden by ColorPoint.

Note that we needed to change the protection of the x and y fields from private to protected

to allow them to be available in the toString method of ColorPoint.

java.lang.Object

Every Java class has a unique superclass hierarchy that ends with java.lang.Object. Every

class inherits from Object implicitly (i.e., no extends is needed).

Some programming languages allow multiple inheritance, where one class can explicity extend

multiple other classes, but Java disallows this. Every class (except java.lang.Object) ex-

tends exactly one other class. That superclass is Object unless otherwise specified.

Multiple inheritance can be a useful tool to programmers, but it significantly complicates the com-

pilers and run-time systems of languages that support it. The designers of Java chose not to include

this feature.

protected and default

Our recent discussion of packages and current discussion of inheritance also allows us to consider

more of the differences among Java’s qualifiers for access control on variables and methods:

public members can be accessed by anyone

private members can be accessed only within the class where defined

protected members can be accessed within the class where defined, by other classes in the

same package, and by any derived classes

Default (no qualifier) members can be accessed within the class where defined and by other

classes in the same package

2



CSIS 225 Advanced Programming Spring 2017

UML and Inheritance

The superclass/subclass relationship is shown in a UML class diagram by a hollow arrow from the

subclass to the superclass. This indicates the “IS-A” relationship. We previously saw that a regular

arrow indicates a “HAS-A” relationship.

Since the superclass is also shown in the diagram, there is no need to replicate the inherited mem-

bers in the diagram of the subclass.

Subtypes

A subclass is a specialization of its base class. However, objects of the subclass still are and can

be treated as objects of the base class.

We say that the subclass determines a subtype of the type of the superclass.

An object of a subtype can be used anywhere that an object of its supertype is expected.

Java will perform a type conversion when object types are not precise.

• A widening conversion converts a subtype to one of its supertypes.

• A narrowing conversion converts a supertype to one of its subtypes. This is sometimes

referred to as downcasting.

Let’s examine subtype polymorphism through a series of examples.

Suppose we have a base class Student and two derived classes Undergraduate and Graduate:

class Student { ... }

class Undergraduate extends Student { ... }

class Graduate extends Student { ... }

We can store references to either subtype in a variable of the base class type:

Student s1, s2;

s1 = new Undergraduate(); // valid widening

s2 = new Graduate(); // valid widening

Now suppose we have a variable of one of the subclasses:

Graduate s3;

s3 = s2; // compilation error, cannot guarantee downcast

s3 = (Graduate) s2; // OK, since s2 is a Graduate

s3 = (Graduate) s1; // Compiles, but run-time cast failure

3



CSIS 225 Advanced Programming Spring 2017

We can avoid a potential run-time failure by checking the type of an object with the instanceof

keyword:

if (s1 instaceof Graduate) {

// perform safe downcast

s3 = (Graduate) s1;

}

Overriding Functions

Inheritance brings up a variety of issues that can be powerful and in some cases, potentially prob-

lematic.

We saw an example above where a derived class (ColorPoint) provided a toString method

that was intended to override the toString method provided by its base class (Point). Let’s

look at that idea a bit more closely next.

A method in a subclass will override a method inherited from its superclass if it has the same

method prototype: the same name and the same signature (i.e., parameter list).

Note that this is different from overloading, where the same class provides multiple methods (or

constructors) of the same name but with different signatures.

We looked earlier at the concept of subtype polymorphism. In the example above, variables of type

Student could be used to refer to either Student objects, or objects of types that are derived

from Student: Undergraduate and Graduate.

Let’s extend that example a bit, by adding a few more classes, Freshman, which is an extension

of Undergraduate, and Phd, which is an extension of Graduate, and providing a method

getName that prints out the student’s name, annotated with the type of student, where applicable:

See Example: Overriding

Even though all of the getName method calls are using a reference of type Student, the

getName method that gets called is determined by the type of the object, not of the reference.

Java uses dynamic binding of method calls to accomplish this.

In some cases, this is straightforward: the method is defined in the class definition corresponding

to the object itself. However, in cases like the object of type Freshman, there is no getName

method defined in that class. So it must locate and execute an appropriate getName method fur-

ther up the class hierarchy. When we call the getName method of the object of type Freshman,

it first checks its direct superclass, Undergraduate. It finds the method there, and uses it. If

Undergraduate did not override the getName method, Java would then continue up the class

hierarchy, and use the getName method in class Student.

The @Override Annotation

4



CSIS 225 Advanced Programming Spring 2017

It is not required, but is considered good programming practice to include the @Override anno-

tation on each method that is intended to override a method of an ancestor in its class hierarchy.

Refer to the previous example to see it in use.

The main advantage of using the @Override annotation is that it can help detect programmer

errors such as method name misspellings and method signature mismatches. For example, suppose

we mistakenly called our method getname in the Phd class. The @Override annotation would

trigger a compile error (try it, it’s fun!). Without the @Override annotation, getname would

be defined as a new method of Phd and it would inherit its getName method from Graduate.

The mistake would need to be detected at run time.

You will be expected to include @Override annotations as appropriate in your programs.

Access Control with Overriding

What should we do about the access control of a method in a derived class that overrides a method

in its base class? That is, if the method was public in the base class, must it be public in the

derived class? Yes, in that case, but Java does allow the method in the derived class to have a less

restrictive access control than the method it overrides from the base class. However, a private

method in the base class cannot be overridden, since it is not visible to any code except the class in

which it is defined. A method with the same name and signature in the derived class would simply

be a method of that class, and would not override the private method in its superclass.

Try it out:

See Example: OverrideAccessControl

Covariant Return Types

Normally, we would expect the return type of a method in a subclass that overrides a corresponding

method in a superclass to be the same as the return type in the superclass. We are allowed to modify

the return type of the overriding method, as long as it is a subtype of the original return type. This

is called a covariant return type.

This can help reduce the amount of type checking (with instanceof) and casting in some

circumstances.

See an example at http://javapapers.com/core-java/covariant-return-type-in-java/

The final Keyword

You have most likely used the final keyword in Java when defining constants:

private static final int BOARD_SIZE = 100;

or local to a method:

final String WIN_MESSAGE = "You win!";

5



CSIS 225 Advanced Programming Spring 2017

In this context, final indicates that the value of the name being defined cannot be changed

subsequently. A statement that tries to assign a new value to such a name will trigger a compile

error.

You are less likely to have encountered the final keyword as a qualifier on a formal parameter:

public void move(final double dx, final double dy) {

...

}

Normally, you can use parameters as local variables and change them as you see fit in the body of

the method, but adding the final qualifier disallows this.

Note however, that this only means that the variable cannot be changed. It does not mean that the

variable’s value cannot be used to change something. For example, consider this method:

public void f(final ArrayList<Integer> a) {

// this would be an error:

// a = new ArrayList<Integer>();

// but this is permitted:

a.add(27);

}

Even though a is final, and it cannot be modified to refer to a different ArrayList, there is

nothing stopping that reference from being used to modify the ArrayList to which it points.

final and Inheritance

The final keyword can also be used to place restrictions on inheritance and function overriding.

If the final qualifier in a class header, it means that the class cannot be extended:

final class A { }

class B extends A { }

This results in a compile error.

final can also be used on an individual method to prevent that method from being overridden in

any subclass:

class A {

6



CSIS 225 Advanced Programming Spring 2017

public final int x() {

return 1;

}

}

class B extends A {

public int x() {

return 2;

}

}

This also results in an error at compile time.

Declaring a class as final is useful in cases where objects of the class are intended to be im-

mutable, like java.lang.String.

7


