Computer Science 220

Assembly Language & Comp. Architecture
SIENAcollege siena College

Computer Science Fall 2011

Topic Notes: MIPS Instruction Set Architecture

vonNeumann Architecture
Modern computers use tiv®nNeumann architecture

Idea: a set of instructions and a loop that executes thoseaisns:

. Fetch an instruction

. Update next instruction location

1
2
3. Decode the instruction
4. Execute the instruction
5

. GOTO 1

Basic picture of the system:

scratchpad

Microsequencer ONtrol

(BRAIN!) store
Y (microcode)

arithmetic
logic
unit

The ALU knows how to do some set of arithmetic and logical afiens on values in the scratch-
pad.

Usually the scratchpad is made up of a setegisters

The micro-sequencer “brain” controls what the ALU readsfthe scratchpad and where it might
put results, and when.

CS 220 Assembly Language & Computer Architecture Fall 2011

We will get into details of the micro-sequencer later.
This is what makes up theentral processing unit (CPU)
Expand this idea a bit:

scratchpad
CPU
Chip
Microsequencer control
(BRAIN!) ~ store
(microcode)
ALU:
arithmetic
logic
? unit
lots of pins Memory
Address Bus
Data Bus
[other devices...

mouse

CPU interacts with memory and other devicesboises
These buses just carry signals that represent the data. didheese later, too.
We’ll have to worry about how we can connect the CPU, memohgratievices to these buses.

There are a variety of speeds, startup rates:

e mouse, keyboard: slow

e disk, network: fast
Some of these are the concern of hardware, others more fop#rating system.

2

CS 220 Assembly Language & Computer Architecture Fall 2011

MIPS Instruction Set Architecture
We will look at the MIPSinstruction set architecture (ISA)

Recall from our first day that the ISA is a key abstraction:

e interface between hardware and low-level software

e standardizes instructions (the languages of the machraghine language bit patterns, etc.

This idea has many advantages, one being that we can hageedifunderlying hardware imple-
mentations of the same ISA. Some may be more efficient (Jabign others, some may be slower
but cheaper or easier to construct.

On the down side, sticking to an ISA can sometimes slow intimva A manufacturer may not
wish to change the ISA, especially for a successful ISA tlhrabdy has lots of software.

Discussion: how important is binary compatibility?

The definition of the ISA is like a contract: it lays out a setndtructions. Software can use those
instructions and expect that any hardware implemenatitimeofSA will execute those instructions
correctly.

This is very similar to the way you can use a class someondalswritten in a language like Java
(think: ArrayLi st). You can trust that it does what it says it does and does recty, but it
doesn’t matter how it works internally.

MIPS processors are in extensive use by NEC, Nintendo, Cisgh,S®ny, etc.
MIPS is an example akduced instruction set computer (RISC) architecture

RISC architectures have a fewer number of simple instrusttbancomplex instruction set com-
puter (CISCarchitectures.

Later, we will discuss the relative advantages of the RISCGI®L approaches.

For now:

e Good news: not many instructions or addressing modes to lear

e Bad news: a single instruction performs only a very simplerajp@n, so programming a
task takes more instructions

e More good news: all modern ISAs have similar types of ingtoms, so what we learn for
MIPS will let you quickly learn more about any ISA

MIPS Arithmetic I nstructions

MIPS arithmetic instructions have three operands:

3

CS 220 Assembly Language & Computer Architecture Fall 2011

add a, b, c

This instruction takes the sum of scratchpad valuesdc and puts the answer into scratchpad
valuea.

It is equivalant to the C code:
a=»>b+ c;

What if we want to code the following:
a=>b+c+d;

We need to do it in two steps:

add a, b, c
add a, a, d

Note that multiple operands may refer to the same scratclogation.

Thesub instruction is similar.

MIPS Registersand Memory

In MIPS, the operands must be registers. It is this collectbregisters (theegister fil§ that
forms the scratchpad.

e 32 registers are provided

e each register stores a 32-bit value

e compilers associate program variables with registers

e registers are referred to by names sucBs8 and$t 1

e we use the §” registers for values that correspond to variables in oagm@ms

e we use thet'” registers for temporary values (more on this later)

For example, consider this example from the text:

f=(0g+h - (+7j);

CS 220 Assembly Language & Computer Architecture Fall 2011

We choose (or better yet, a compiler chooses) register®te #te values of our variable§: in
$s0,gin$s1,hin$s2,i in$s3, andj in $s4.

We'll also need two temporary values, which we will storein0 and$t 1.
The MIPS code:

add $t0, $s1, $s2
add $t1, $s3, $s4
sub $s0, $tO0, $t1

What if you need more variables than there are registers?

Accessmemory

e think of memory as a large, one-dimensional array

e a memoryaddresss an index into this array of values

e memory is a much larger storage space than registers, begstwthat space is slower
e MIPS arithmetic (and other) instructions can’t operateclily on values in memory

e data must be transferred first from memory into a registen the answer transferred back
Since registers are 32-bit (4-byte) values, we often aaoessory in words instead of bytes.

¢ 232 pytes with byte addresses from 028 — 1
e 230 words with byte addressés4, 8, ...232 — 4

e words must be aligned on 4-byte boundaries
So suppose we have the following C code to translate to MIPS:
A[12] = h + A 8];

whereA is an array of word-sized values.
We have the address of the first elemenfdnh register$s 3 andh has been assigned $s 2.

First, note that the values in the arrAyare word-sized, so each entry takes 4 bytes. We can find
entries in the array:

CS 220 Assembly Language & Computer Architecture Fall 2011

A[O] $s3+0
ALl $s3+4
Al2] $s3+8
AL8] $s3+32

Al 12] $s3+48
The notation to get the value at locati$a3+4, for example, ig}($s3) .

So what we'd like to write:
add 48(%$s3), $s2, 32($s3)

But we can't, since MIPS arithmetic instructions can’t oper@n values in memory. We’'ll have to
copy the value\[8] into a temporary register, add into a temporary registen ttore the value
inA[12] .

The code:

lw $t0, 32($s3)

add $t0, $s2, $tO

sw $t 0, 48($s3)

The new instructions are to load a wdrdrand store a worgw.

Aside: why is it OK to overwrite the value it 0 in theadd instruction even though our original
C code doesn’'t changy 8] ?

The address is 3 is called abase registeand the constants we add to it are calleddfisets

Immediate Addressing M ode

We often need to deal with constants. So far, the only way Wwe'éble to add a constant to a
register is by having that constant in a register or a menmmegtlon (and how exactly would we
get it there?).

So there is a special format of tlaeld instruction: add immediate, specified addi . Its third
operand is a constant value used in the addition.

addi $s2, $s2, 4

MI1PS Machine Language
MIPS assembly instructions correspond to 32-bit MIPS maeimstructions.

For example:

CS 220 Assembly Language & Computer Architecture Fall 2011

add $t1, $s1, $s2
This corresponds to the machine instruction
00000010001100100100000000100000

Somehow, the fact that this is @dd instruction and which registers are involved is encoded in
this particular 32-bit value.

We interpret the 32-bit value in this case by breaking it dowa fieldsaccording to thénstruction
format

op rs rt rd shmat | funct
6 bits 5bits | 5bits | 5bits | 5 bits 6 bits
0 17 18 8 0 32
000000 | 10001 | 10010 | 01000 | 00000 | 100000

The meanings of the fields:

e 0p: theopcode- 6 bits
e 1 s: the first register source operand — 5 bits (why?)

e 1t : the second register source operand — 5 bits

r d: the register destination operand — 5 bits
e shmat : the shift amount — 5 bits (more later)

e funct : the variant of the operation — 6 bits

This is an example of aR-type(register) instruction, which is encoded in tReformat These are
the instructions that require three registers to be spdcifie

The 32 registers are encoded as follows:

| Name [Register Number | Usage |
$zero 0 constant value 0
$at 1 reserved for assembler use
$vO0- $v1 2-3 values for results and expression evaluation
$a0- $a3 4-7 procedure parameters
$t0-$t7 8-15 temporary variables
$s0- $s7 16-23 saved variable values
$t 8-$t9 24-25 more temporary variables
26-27 reserved for operating system use
$gp 28 global pointer
$sp 29 stack pointer
$fp 30 frame pointer
$ra 31 return address

CS 220 Assembly Language & Computer Architecture Fall 2011

Other instructions don’t need three registers. Immediatéderinstructions, for example, need 2
registers and a constant value. Thesddypeinstructions, stored in thieformat

addi $s1, $s2, 100

op rs rt addr ess
6 bits 5 bits | 5 bits 16 bits
8 17 18 100
001000 | 10001 | 10010 | OO00000000110100

Here, three of the fields are replaced by a single 16-bit fialted addr ess. For theaddi
instruction, this stores the constant value to be added.

The load and store instructions use this format as well.
lw $t0, 1200(%$t1)

This instruction’s function is to retrieve the value from mary at the address pointed to by the
contents ofpt 1, offset by 1200, and store the value$inO.

op rs rt addr ess
35 9 8 1200
010101 | 01001 | 01000 | 0000010010110000

Theswinstruction is similar, with opcode 43.

MIPS Logical Instructions

We will look quickly at the logical shift instructionss!| | andsr |, which stand for shift left
logical and shift right logical, respectively.

These instructions use tlsdhant field in an R-format instruction:

sl $t2, $s0, 4

op|rs|rt |rd|shmat |funct

Note thatr s is not used.
Recall that these are quick ways to multiply and divide by peved 2.

Bitwise and, or, nor follow the R-format, much likeadd, and the immediate versiomndi
andori follow the I-format, likeaddi .

CS 220 Assembly Language & Computer Architecture Fall 2011

M IPS Control Flow Instructions

Any non-trivial program needs to make decisions, hencedmelitional branchnstructions:

beq regl, reg2, | abel
bne regl, reg2, | abel

beq will cause a branch to the statement labdlebel if the values ofr egl andr eg2 are
equal, and continue to the next instruction otherwise.

bne branches when not equal.

These use the I-format for the machine instruction:

bne $s0, $s1, Exit

op|rs|rt | address
5 (16| 17 Exit

The address has to fit in 16 bits, so does this mean we can aagloito a 16-bit address? No
- we usually use thaddr ess field as a relative offset to the program counteC); PC-relative
addressing

So if the labelExi t is 44 away in the positive direction from the current progresanter, we
store 11 in the address field.

We divide by 4 since we know the bottom 2 bits are 0’s anywagi@skes are word-addressable).
This means we can jump anywhere frer3'” to 2! from the currenPC.

Note: thePC is incremented (by 4, as instructions are word-sized) aarlhe execution of a
given instruction. (Step 2 of Fetch, Update, Decode, Ex@ctherefore, by the time we're really
executing an instruction, it contains the address ofriaeinstruction to be executed. A branch
that is taken simply needs to modify tR€ before we fetch the next instruction.

There is also an unconditional jump instruction:
j | abel

No registers here, so we have more bits available for theeaddiT his is d-formatinstruction.

If we want to jump to memory location 4848, the instruction is

op |address
6 bits| 26 bits
2 1212

CS 220 Assembly Language & Computer Architecture Fall 2011

Again, the bottom 2 bits are always 0, so we divide our interjdenp target by 4 when encoding
the instruction.

We can also perform inequality comparisons with two moré&utsions:

slt $t1, $s2, $si
slti $t2, $t4, 8

These are set on less than instructions, and set the valle ¢afget register to 1 if the second
operand is less than the third, O otherwise.

We can use these to implement all of the conditional and fwppbnstructs we are used to in
high-level languages.

Supposeé isin$s0,j isin$s1, andhisin $s3.
if (i==)) h=1i +j;
MIPS assembly:

bne $s0, $s1, Label
add $s3, $s0, $s1
Label :

Slightly more complex:

if (i'sj) h=1i1 +j;
else h =i - j;

assembles to:

beq $s0, $sl1, El sePart
add $s3, $s0, $s1
j Overlf
El sePart:
sub $s3, $s0, $s1
Overlf:

And an inequality:

if (i<gj) h =i
else h =1 - j;

10

CS 220 Assembly Language & Computer Architecture Fall 2011

assembles to:

slt $t0, $s0, $s1
beq $t0, $zero, El sePart
add $s3, $s0, $si
] Overlf
El sePart :
sub $s3, $s0, $s1
Overlf:

Larger Constantsin MIPS

So far, we have seen how to get 16-bit constants to use in inateetiode instructions. But what
if we want a 32-bit constant?

MIPS requires that all instructions fit in a single 32-bit wpso we can’'t have an opcode and the
whole 32-bit constant at once.

It takes two instructions:

First, “load upper immediate”:
lui $t0, Oxab32

This sets$t 0 to 0xa5320000. It is an I-format instruction, using theddr ess field of that
format to get the 16 bits for the top half of the specified regis

We can then put in appropriate lower order bits:
ori $t0, Ox8d7e

This will “or in” the bottom bits to have the constant spedfiéeaving the upper bits that we've
already set alonebt 0 is now0Oxa5328d7e.

What ElseisMissing?

The MIPS ISA doesn't provide instructions for operatiorstttan easily be expressed as an exist-
ing operation.

For example, you might want to copy a value in one registentileer:
nove $t0, $t1

This is valid MIPSassemblyanguage, but not valid MIP®8achindanguage. This is pseudoin-
struction

As assembler would encode this as:

11

CS 220 Assembly Language & Computer Architecture Fall 2011

add $t0, $t1, $zero

In this case, there’s no extra cost. It’s still just one instion.

Other pseudoinstructions may translate to more than oteuati®n. For example, the pseudoin-
structionbgt , which branches on greater than:

bgt $s1, $s2, Label
would likely translate to

slt $at, $s2, $si
bne $at, $zero, Label

Note the use of the “reserved for assembler use” regbster
Others:

| i —load immediate

| a —load address

sgt,sl e,sge —seton ...

bge, bgt, bl e, bl t — conditional branches

When determining relative costs of different translatiohdigh-level language into assembly,
this pseudoinstruction should be considered to cost twsceach as a regular instruction or a
pseudoinstruction that corresponds directly to a singlelmme instruction.

The text goes into more detail about the MIPS ISA, includimgnechanisms for procedure calls,
I/0, and more. We will return to some of this later.

12

