
Computer Science 220
Assembly Language & Comp. Architecture
Siena College
Fall 2011

Topic Notes: MIPS Instruction Set Architecture

vonNeumann Architecture
Modern computers use thevonNeumann architecture.

Idea: a set of instructions and a loop that executes those instructions:

1. Fetch an instruction

2. Update next instruction location

3. Decode the instruction

4. Execute the instruction

5. GOTO 1

Basic picture of the system:

(microcode)

scratchpad

ALU:
arithmetic

logic
unit

Microsequencer
(BRAIN!)

control
store

The ALU knows how to do some set of arithmetic and logical operations on values in the scratch-
pad.

Usually the scratchpad is made up of a set ofregisters.

The micro-sequencer “brain” controls what the ALU reads from the scratchpad and where it might
put results, and when.

CS 220 Assembly Language & Computer Architecture Fall 2011

We will get into details of the micro-sequencer later.

This is what makes up thecentral processing unit (CPU).

Expand this idea a bit:

other devices...

scratchpad

ALU:
arithmetic

logic
unit

Microsequencer
(BRAIN!)

control
store

(microcode)

CPU
Chip

Memory

Address Bus

Data Bus

lots of pins

mouse

CPU interacts with memory and other devices onbuses.

These buses just carry signals that represent the data. Moreon these later, too.

We’ll have to worry about how we can connect the CPU, memory, other devices to these buses.

There are a variety of speeds, startup rates:

• mouse, keyboard: slow

• disk, network: fast

Some of these are the concern of hardware, others more for theoperating system.

2

CS 220 Assembly Language & Computer Architecture Fall 2011

MIPS Instruction Set Architecture
We will look at the MIPSinstruction set architecture (ISA).

Recall from our first day that the ISA is a key abstraction:

• interface between hardware and low-level software

• standardizes instructions (the languages of the machine),machine language bit patterns, etc.

This idea has many advantages, one being that we can have different underlying hardware imple-
mentations of the same ISA. Some may be more efficient (faster) than others, some may be slower
but cheaper or easier to construct.

On the down side, sticking to an ISA can sometimes slow innovation. A manufacturer may not
wish to change the ISA, especially for a successful ISA that already has lots of software.

Discussion: how important is binary compatibility?

The definition of the ISA is like a contract: it lays out a set ofinstructions. Software can use those
instructions and expect that any hardware implemenation ofthe ISA will execute those instructions
correctly.

This is very similar to the way you can use a class someone elsehas written in a language like Java
(think: ArrayList). You can trust that it does what it says it does and does it correctly, but it
doesn’t matter how it works internally.

MIPS processors are in extensive use by NEC, Nintendo, Cisco, SGI, Sony, etc.

MIPS is an example ofreduced instruction set computer (RISC) architecture.

RISC architectures have a fewer number of simple instructions thancomplex instruction set com-
puter (CISC)architectures.

Later, we will discuss the relative advantages of the RISC andCISC approaches.

For now:

• Good news: not many instructions or addressing modes to learn

• Bad news: a single instruction performs only a very simple operation, so programming a
task takes more instructions

• More good news: all modern ISAs have similar types of instructions, so what we learn for
MIPS will let you quickly learn more about any ISA

MIPS Arithmetic Instructions

MIPS arithmetic instructions have three operands:

3

CS 220 Assembly Language & Computer Architecture Fall 2011

add a, b, c

This instruction takes the sum of scratchpad valuesb andc and puts the answer into scratchpad
valuea.

It is equivalant to the C code:

a = b + c;

What if we want to code the following:

a = b + c + d;

We need to do it in two steps:

add a, b, c
add a, a, d

Note that multiple operands may refer to the same scratchpadlocation.

Thesub instruction is similar.

MIPS Registers and Memory

In MIPS, the operands must be registers. It is this collection of registers (theregister file) that
forms the scratchpad.

• 32 registers are provided

• each register stores a 32-bit value

• compilers associate program variables with registers

• registers are referred to by names such as$s0 and$t1

• we use the “s” registers for values that correspond to variables in our programs

• we use the “t” registers for temporary values (more on this later)

For example, consider this example from the text:

f = (g + h) - (i + j);

4

CS 220 Assembly Language & Computer Architecture Fall 2011

We choose (or better yet, a compiler chooses) registers to store the values of our variables:f in
$s0, g in $s1, h in $s2, i in $s3, andj in $s4.

We’ll also need two temporary values, which we will store in$t0 and$t1.

The MIPS code:

add $t0, $s1, $s2
add $t1, $s3, $s4
sub $s0, $t0, $t1

What if you need more variables than there are registers?

Accessmemory!

• think of memory as a large, one-dimensional array

• a memoryaddressis an index into this array of values

• memory is a much larger storage space than registers, but access to that space is slower

• MIPS arithmetic (and other) instructions can’t operate directly on values in memory

• data must be transferred first from memory into a register, then the answer transferred back

Since registers are 32-bit (4-byte) values, we often accessmemory in words instead of bytes.

• 2
32 bytes with byte addresses from 0 to2

32
− 1

• 2
30 words with byte addresses0, 4, 8, ...232

− 4

• words must be aligned on 4-byte boundaries

So suppose we have the following C code to translate to MIPS:

A[12] = h + A[8];

whereA is an array of word-sized values.

We have the address of the first element ofA in register$s3 andh has been assigned to$s2.

First, note that the values in the arrayA are word-sized, so each entry takes 4 bytes. We can find
entries in the array:

5

CS 220 Assembly Language & Computer Architecture Fall 2011

A[0] $s3+0
A[1] $s3+4
A[2] $s3+8

... ...
A[8] $s3+32

... ...
A[12] $s3+48

The notation to get the value at location$s3+4, for example, is4($s3).

So what we’d like to write:

add 48($s3), $s2, 32($s3)

But we can’t, since MIPS arithmetic instructions can’t operate on values in memory. We’ll have to
copy the valueA[8] into a temporary register, add into a temporary register, then store the value
in A[12].

The code:

lw $t0, 32($s3)
add $t0, $s2, $t0
sw $t0, 48($s3)

The new instructions are to load a wordlw and store a wordsw.

Aside: why is it OK to overwrite the value in$t0 in theadd instruction even though our original
C code doesn’t changeA[8]?

The address in$s3 is called abase registerand the constants we add to it are called theoffsets.

Immediate Addressing Mode

We often need to deal with constants. So far, the only way we’dbe able to add a constant to a
register is by having that constant in a register or a memory location (and how exactly would we
get it there?).

So there is a special format of theadd instruction: add immediate, specified asaddi. Its third
operand is a constant value used in the addition.

addi $s2, $s2, 4

MIPS Machine Language
MIPS assembly instructions correspond to 32-bit MIPS machine instructions.

For example:

6

CS 220 Assembly Language & Computer Architecture Fall 2011

add $t1, $s1, $s2

This corresponds to the machine instruction

00000010001100100100000000100000

Somehow, the fact that this is anadd instruction and which registers are involved is encoded in
this particular 32-bit value.

We interpret the 32-bit value in this case by breaking it downinto fieldsaccording to theinstruction
format.

op rs rt rd shmat funct
6 bits 5 bits 5 bits 5 bits 5 bits 6 bits
0 17 18 8 0 32

000000 10001 10010 01000 00000 100000

The meanings of the fields:

• op: theopcode– 6 bits

• rs: the first register source operand – 5 bits (why?)

• rt: the second register source operand – 5 bits

• rd: the register destination operand – 5 bits

• shmat: the shift amount — 5 bits (more later)

• funct: the variant of the operation – 6 bits

This is an example of anR-type(register) instruction, which is encoded in theR-format. These are
the instructions that require three registers to be specified.

The 32 registers are encoded as follows:

Name Register Number Usage
$zero 0 constant value 0
$at 1 reserved for assembler use

$v0-$v1 2-3 values for results and expression evaluation
$a0-$a3 4-7 procedure parameters
$t0-$t7 8-15 temporary variables
$s0-$s7 16-23 saved variable values
$t8-$t9 24-25 more temporary variables

26-27 reserved for operating system use
$gp 28 global pointer
$sp 29 stack pointer
$fp 30 frame pointer
$ra 31 return address

7

CS 220 Assembly Language & Computer Architecture Fall 2011

Other instructions don’t need three registers. Immediate mode instructions, for example, need 2
registers and a constant value. These areI-type instructions, stored in theI-format:

addi $s1, $s2, 100

op rs rt address
6 bits 5 bits 5 bits 16 bits
8 17 18 100

001000 10001 10010 0000000000110100

Here, three of the fields are replaced by a single 16-bit field called address. For theaddi
instruction, this stores the constant value to be added.

The load and store instructions use this format as well.

lw $t0, 1200($t1)

This instruction’s function is to retrieve the value from memory at the address pointed to by the
contents of$t1, offset by 1200, and store the value in$t0.

op rs rt address
35 9 8 1200

010101 01001 01000 0000010010110000

Thesw instruction is similar, with opcode 43.

MIPS Logical Instructions

We will look quickly at the logical shift instructions:sll andsrl, which stand for shift left
logical and shift right logical, respectively.

These instructions use theshamt field in an R-format instruction:

sll $t2, $s0, 4

op rs rt rd shmat funct
0 0 16 10 4 0

Note thatrs is not used.

Recall that these are quick ways to multiply and divide by powers of 2.

Bitwise and, or, nor follow the R-format, much likeadd, and the immediate versionsandi
andori follow the I-format, likeaddi.

8

CS 220 Assembly Language & Computer Architecture Fall 2011

MIPS Control Flow Instructions

Any non-trivial program needs to make decisions, hence theconditional branchinstructions:

beq reg1, reg2, label
bne reg1, reg2, label

beq will cause a branch to the statement labeledlabel if the values ofreg1 andreg2 are
equal, and continue to the next instruction otherwise.

bne branches when not equal.

These use the I-format for the machine instruction:

bne $s0, $s1, Exit

op rs rt address
5 16 17 Exit

The address has to fit in 16 bits, so does this mean we can only branch to a 16-bit address? No
- we usually use theaddress field as a relative offset to the program counter (PC): PC-relative
addressing.

So if the labelExit is 44 away in the positive direction from the current programcounter, we
store 11 in the address field.

We divide by 4 since we know the bottom 2 bits are 0’s anyway (addresses are word-addressable).
This means we can jump anywhere from−2

17 to 2
17 from the currentPC.

Note: thePC is incremented (by 4, as instructions are word-sized) earlyin the execution of a
given instruction. (Step 2 of Fetch, Update, Decode, Execute). Therefore, by the time we’re really
executing an instruction, it contains the address of thenext instruction to be executed. A branch
that is taken simply needs to modify thePC before we fetch the next instruction.

There is also an unconditional jump instruction:

j label

No registers here, so we have more bits available for the address. This is aJ-formatinstruction.

If we want to jump to memory location 4848, the instruction is:

op address
6 bits 26 bits

2 1212

9

CS 220 Assembly Language & Computer Architecture Fall 2011

Again, the bottom 2 bits are always 0, so we divide our intended jump target by 4 when encoding
the instruction.

We can also perform inequality comparisons with two more instructions:

slt $t1, $s2, $s1
slti $t2, $t4, 8

These are set on less than instructions, and set the value of the target register to 1 if the second
operand is less than the third, 0 otherwise.

We can use these to implement all of the conditional and looping constructs we are used to in
high-level languages.

Supposei is in $s0, j is in $s1, andh is in $s3.

if (i==j) h = i + j;

MIPS assembly:

bne $s0, $s1, Label
add $s3, $s0, $s1

Label: ...

Slightly more complex:

if (i!=j) h = i + j;
else h = i - j;

assembles to:

beq $s0, $s1, ElsePart
add $s3, $s0, $s1
j OverIf

ElsePart:
sub $s3, $s0, $s1

OverIf: ...

And an inequality:

if (i<j) h = i + j;
else h = i - j;

10

CS 220 Assembly Language & Computer Architecture Fall 2011

assembles to:

slt $t0, $s0, $s1
beq $t0, $zero, ElsePart
add $s3, $s0, $s1
j OverIf

ElsePart:
sub $s3, $s0, $s1

OverIf: ...

Larger Constants in MIPS

So far, we have seen how to get 16-bit constants to use in immediate mode instructions. But what
if we want a 32-bit constant?

MIPS requires that all instructions fit in a single 32-bit word, so we can’t have an opcode and the
whole 32-bit constant at once.

It takes two instructions:

First, “load upper immediate”:

lui $t0, 0xa532

This sets$t0 to 0xa5320000. It is an I-format instruction, using theaddress field of that
format to get the 16 bits for the top half of the specified register.

We can then put in appropriate lower order bits:

ori $t0, 0x8d7e

This will “or in” the bottom bits to have the constant specified, leaving the upper bits that we’ve
already set alone.$t0 is now0xa5328d7e.

What Else is Missing?

The MIPS ISA doesn’t provide instructions for operations that can easily be expressed as an exist-
ing operation.

For example, you might want to copy a value in one register to another:

move $t0, $t1

This is valid MIPSassemblylanguage, but not valid MIPSmachinelanguage. This is apseudoin-
struction.

As assembler would encode this as:

11

CS 220 Assembly Language & Computer Architecture Fall 2011

add $t0, $t1, $zero

In this case, there’s no extra cost. It’s still just one instruction.

Other pseudoinstructions may translate to more than one instruction. For example, the pseudoin-
structionbgt, which branches on greater than:

bgt $s1, $s2, Label

would likely translate to

slt $at, $s2, $s1
bne $at, $zero, Label

Note the use of the “reserved for assembler use” register$at.

Others:

• li – load immediate

• la – load address

• sgt, sle, sge – set on ...

• bge, bgt, ble, blt – conditional branches

When determining relative costs of different translations of high-level language into assembly,
this pseudoinstruction should be considered to cost twice as much as a regular instruction or a
pseudoinstruction that corresponds directly to a single machine instruction.

The text goes into more detail about the MIPS ISA, including the mechanisms for procedure calls,
I/O, and more. We will return to some of this later.

12

