Computer Science 220

Assembly Language & Comp. Architecture
SIENAcollege siena College

Computer Science Fall 2011

Topic Notes: Building Memory

We'll next see how we can use flip-flop devices to construct orgm

Buffers

We've seen and used inverters.

Recall that we can put two inverters in series to construcifeyr .

We represent a buffer as a triangular symbol (like an invebigt with no circle at the end.
Its effect is to slow down and boost the signal strength ottimeent in the circuit.

Recall that large fan-out when wiring physical circuits cangdooblematic if there is not enough
current to drive subsequent gates. A buffer can take cateatf t

We also may need to delay the propagation of a value througicw@tdo deliver it to the desired
place at the same time as some other value. Buffers can conaady ffior this.

Tristate Buffers

So far, we have thought almost exclusively about each wigate output as having a value of O
or 1. It can be easy to think about the value 0 as the absenceatdi@ but that’s not true.

Being connected to ground or to a low gate output is differeabtnot being connected.

You can think of the wire as transmitting some value. A 0 vatheans the wire like a pipe spilling
out 0’s, a 1 value is like a pipe spilling out 1's.

Or think of it like a pipe with hot water flowing vs. a pipe witlld water flowing.
But a disconnected wire or a pipe with no water source isnllisgiout anything.

So even in our circuits so far, there could be a wire or a gatearnected to anything. Sometimes,
this is just what we want.

To accomplish this, we next look at a device calledistate buffer.

in —D— out

control

CS 220 Assembly Language & Computer Architecture Fall 2011

When the control line is high, the device connects the outpthe input (with some amplifying
and delay properties), like a buffer.

When control is low, it behaves like a broken wire — physicdlgconnected. This is often referred
to as ahigh impedence state.

We will not be concerned about how to construct such a devibey+e available to us as building
blocks.

As an example of where this device can be useful, suppose veeahpoint in a circuit where we
know that exactly one of a number of outputs will be high, aa MUX:

Doo I I

x1 * | J
h

Do1

x1 3
»

D10 o

%1
‘ 3

D11
x1

Al w1l xlAD

Logism Circuit: “jteresco/shared/cs220/examples/logisim/4tolmux.circ

We couldn’t just tie the outputs of the ANDs together becausecan’t feed back the output of
some gates through the output lines of others. We had to fessd through an OR gate to the
output.

CS 220 Assembly Language & Computer Architecture Fall 2011

D00 I .
%1 : j—
Dol
T ST |

-
D10 Q
%1 p

P ——

D11 .
il]
Allx1l x 1|AD

Logism Circuit:
“jteresco/shared/cs220/examples/logisim/4tolmuxtristate.circ

Since only one of the tristate buffers will be connected, ae safely do what looks like a “wired
or’.

Note: the Logisim device is theontrolled buffer (or, if we want to invert as part of the device, the
controlled inverter).

Driving the Bus

We can use this idea to allow one of multiple inputs to be mlameto a wire for transmission
somewhere else.

Such a wire is called bus.
A bus must have exactly 0 or 1 “drivers”.
This will be useful when we want to connect up our CPUs to a bdmkemnory.

In that case, tristate buffers can be used to determine whé#ibk bus is being used to send data
from the CPU to memory, from the memory to the CPU, or neitherhBan’t be done at once.

Activating multiple tristate buffers resulting in multgbus drivers can cause problems. At best,
we will have conflicting signals and get incorrect behaviéit worst, we would sendi signals
backwards through our gates, resulting in potential dan@gee components.

Building Memory Devices

We often measure the sizes of memory using terms like “kighymegabyte”, “and gigabyte”.

3

CS 220 Assembly Language & Computer Architecture Fall 2011

Our goal is to see how to construct memory devices at thag scal

But...we’ll start much smaller. We first build a device that ctore 4 bits of memory:

7logn 4x1

RD/WRT

Cs

Let’s look at what each input and output means here.

1. 4 x 1: 4 is the number of units of memory, 1 is thddressability, the smallest number of
bits we can address. “4 memory locations of 1 bit each.”

2. D is a bidirectional data bus:

e when we want to store a value in the memory, we put that valu® @s input to the
memory circuit

e when we want to retrieve a value from memory, its value is puDoas output from
the memory circuit

e D consists of a number of wires equal to the addressabilitii@hemory
3. Aisthe address lines

e need to be able to select from amongralinits of memory
e this requiredog,(n) address lines

¢ the value onA specifies which bit(s) of the memory are storing a copy of vhain
the data bus (a memory write) or are placing their value fopaionto the data bus (a
memory read)

4. RD/W RT selects whether the chip should be reading or writing — “wlibiving the bus?”

5. C'S'is chip select. Are we doing anything with this chip right rioim practice, this is often
an active low control, meaning the chip is selected when the input is Gldésl when the
input is 1. To keep things simple in our current discussioa,will assume an active high
chip select.

How can we build this out of components we have seen?

We use 4 D-type flip-flops and connect them up to our inputsppeopriate.

CS 220 Assembly Language & Computer Architecture Fall 2011

[«

RD/WRT
D
A W P
D00 kj
L cLk
TPl
00 ~ D01
01 CLK _
A7l 10 % %
11
decoder Ik Q
D10
> CLK
L D11
} CLK
How it works:

1. Correct address line is set high by the decoder. This vadlde 3 of the 4'L K inputs and
3 of the 4 AND gates that mask outputs of the flip-flops.

2. Data line is fed as input, unconditionally, to all flip-fkap

3. WhenC'S (“chip select”) is low, all 4 input AND gates are low, inhiliig anyC' L K input.
Also, the AND gate at the output is low, meaning the tristatids prevents any signal from
the circuit from being written to the data bus.

4. WhenRD /W RT is high, an input to all 4 input AND gates is low, 6. K is inhibited.

5. WhenRD/W RT is low, the AND gate controlling the tristate buffer is loweaning the
output is not being sent tb.

6. When bothC'S and RD /W RT are high, the output being sampled from one of the D flip-
flops is being passed through o One of the tri-state buffers is “driving the bus”.

7. When(C'S is high andRD /W RT is low, we assume someone else is “driving the bus” and
iS putting the values on the bus that we wish to store in oneuoflip-flops.

Fall 2011

CS 220 Assembly Language & Computer Architecture

We have a 4-bit memory!

4x4 Memory
We normally don’t think about storing values in memory jusedit at a time.

How about building a device that can store 4 4-bit values?

72 4x4

Here, we have the same 2 address lin@3/ /W RT line and a chip select, but instead of a single
data line, we have 4 data lines.

We will build our 4x4 device out of 4 41 devices:

5 / TDo DTl DTZ D3
A
11 . .
D D D D
A A A A
4x1 4x1 4x1 4x1
RD/WRT RD/WRT RD/WRT RD/WRT
|7 CS |7 CS |7 CS CS
RD/WRT
CS l l l

Note that the data buB is actually 4 wires, and we only connect one of the 4 to eacheofik 1's.

4x8 Memory

So far, we've gone from the D-type flip flip, (which we can thiokas a x1 memory device) to
a 4x 1 by adding 2 address lines, and using a decoder to have ttdsesa lines activate one of 4
1x1 devices.

Then we went from 41 to 4x4 by having 4 data lines, each of which goes to one of thé 4
devices.

CS 220 Assembly Language & Computer Architecture Fall 2011

We could do the same thing for ax8 device — 8 data lines, each of which is fed into a separate
4x 1 device.

But if we already have 44 devices, we can expand tx8:

D3 D4-D7

/DO-

D

A

dA
4 4
D D
A A
4x4 4x4

RD/WRT RD/WRT
CS CS

RD/WRT
CS

=

That's 4 bytes of memory.

1KB memory
Now let’'s consider how we might build a kilobyte of memory ofibur 4x 8 devices.

The device we're trying to build will look like this:

710 1Kx8

72 4x8

CS 220 Assembly Language & Computer Architecture Fall 2011

We refer to each of these<8 devices as bank of memory.

Of our 10 address lines, 8 are used to select among the 256 badkhe other 2 select among the
4 bytes on the bank chosen.

If we think of our address lines as bitg Ag... Ay, two main possibilities come to mind for how to
organize things:

e Option 1: A; and A, select the byte within a bank antl... A, select the bank.

e Option 2: Ay and Ag select the byte within a bank ant}... A, select the bank.
In either case, we want all 8 data lines wired to each bank, am WheR D /W RT wired to each
bank.
Our two lines to select a byte within a bank are wired to thereskllines of the bank.

The other 8 address lines are passed through a decoder,eadddbder outputs are ANDed with
the C'S inputs of the whole circuit then wired to tl{&S inputs of each bank:

Bank O

/ / .
ATn 7

A 4x8

[cs

Bank 1

N

N\

A 4x8

s

8-t0-256 |
DECODER| .

Bank 255

A 4x8

e

CS 220 Assembly Language & Computer Architecture Fall 2011

Which bytes are stored on which chips with the two layout oystib

Bank| Option1 Option 2
0 0-3 0, 256, 512, 768
1 4-7 1, 257,513, 769
2 8-11 2,258,514, 770

254 | 1016-1019 254, 510, 766, 1022
255 | 1020-1023 255, 511, 767, 1023

Each possible configuration has advangates and disadesntag

Option 1 means we can lose a chip and still have large chungsraiguous memory available.

Option 2 has advantages for chip layout.

SIMM Layout

You have probably seen and maybe used memory chips of the SiviMingle in-line memory
module) type.

7 a{(glllress lines
64 data lines

Suppose we have 1 KB of memory of 8-bit bytes.

This requires 10 bits for full addressing, 8 data lines.

But this is not normally how it would be set up.

More likely, you would find 64 data lines and only 7 addresedin

What does this mean?

It's really an 8-byte addressable memory. We load/store ongiin chunks of 8 bytes at a time, so
there are only 128 addressable chunks.

When memory is requested, say address 1.
A = AgAsg...Ay = 0000000001
The 7 high bits of the address, 3 = 0000000 are sent to the SIMM on the address lines.

We get back bytes 07, even though we only wanted 1. It's upgdPU, which still has the full
address (includingl; A; Ap) to pick out the byte it’s interested in.

To access location 517 = 1000000101, we request 8-byte dbunknd take byte 5 of those that
come back.

CS 220 Assembly Language & Computer Architecture Fall 2011

This memory is organized using “Option 2” from our discugssabout how to arrange memory
among multiple banks.

This may at first seem wasteful, but the memory chip can g& lajites easily and more wires in
and out means we can transfer more memory more quickly.

Plus.. there’s a good chance that any memory access willlog/él by additional memory access
to nearby locations (think — local variables, an array, sejal program text).

Thislocality is a natural feature of most programs.
All machines today have memory that is addressable in sommekdarger than one byte.

The decisions about how we break this down have ripple affilcbughout the architecture. We
will soon see this in much detail.

Error Detection and Correction

You have probably heard aboetror correcting memory. This is a memory circuit that can still
give the correct answer even if a bit has mistakenly beenggwnThis could happen from a bad
gate in a flip-flop, for example.

In order to do any kind of error correction, we need to buildame redundancy.

We can detect a single-bit memory error by addinggaty bit. The parity bit is set to tell whether
the original value in memory has an odd or even number of bitsosl. If we later read the value
from memory and the parity bit no longer accurately reflebesddd/evenness of the number of
bits set to 1, we know something has gone wrong.

For example, if we have an 8-bit data value and we want to @iaiven parity, we add a 9th bit
that makes the total number of bits that are set an even number

byte even parity bit
00000000 0
00000001 1
01110100 0
11000111 1
11111111 0

From this, we can check, each time we retrieve a byte, thatsskien paity. If not, we know that
something is wrong.

But that's all it tells us. Since we don’t know which of the 9dbétre wrong, we can't fix it.

Some of you may have had computers that crash with a Blue Sof&sath saying that a memory
parity error was detected.

This is not just a Windows phenomenon - | have had Unix sysiaash with a kernel error that
a memory parity error was detected. The idea is that sincense khere was a memory error
but we don’t know how to fix it, it's better to halt the systenthrar than risk producing incorrect
results.

10

CS 220 Assembly Language & Computer Architecture Fall 2011

To both detect and fix an error, we will need to store more eitma

We consider here an error correction scheme that can fix &diitgerror but at the expense of 4
extra bits for each byte of memory (50% overhead).

We use 12 bits to represent an 8-bit value. We number the Bitk dnd use the ones whose
numbers are powers of 2 as parity bits:

12 11 10 9 8 7 6 5 4 3 2 1
1100 1011 1010 1001_ 10000111 0110 0101 01000011 0010 0001

We use the parity bits as follows:

=

Position 1 stores the even parity of odd-numbered bits
Position 2 stores the even parity of bits whose numberhea2’s bit set

Position 4 stores the even parity of bits whose numberheg’s bit set

» w D

Position 8 stores the even parity of bits whose numberhe8’s bit set

So to store the value 94 = 01011110 we first fill in the data bits:

0 1 0 1 . 1 1 1 . 0 _ _
1100 1011 1010 1001_10000111 0110 0101 _01000011 0010 0001

Position 1 stores the even parity of the bits at 3, 5, 7, 9, 1df those are set to 1, so we set that
bit to 0.

Position 2 stores the even parity of the bits at 3, 6, 7, 1031df.those are set to 1, so we set that
bitto 1.

Position 4 stores the even parity of the bits at 5, 6, 7, 12. tBade are set to 1, so we set that bit
to 1.

Position 8 stores the even parity of the bits at 9, 10, 11, 1@ tBese are set to 1, so we set that
bit to 0.

0 1 0 1 0 1 1 1 1 0 1 0
1100 1011 1010 1001_ 10000111 0110 0101 01000011 0010 0001

When we retrieve a value from memory, we can make sure it's OKdogputing the 4 parity bits
and comparing to the stored parity bits.

If they all match, we're OK.
If there’s any mismatch, we know there’s an error.
Let’s introduce an error into our stored value. We'll chatigethird bitto a 1.

0 1 1 1 0 1 1 1 1 0 1 0
1100 1011 1010 1001_ 10000111 0110 0101 01000011 0010 0001

So we recompute the parity bits on the value we retrievedcantpare to the stored bits:

11

CS 220 Assembly Language & Computer Architecture Fall 2011

bit computed stored match

P 0 0 0
Py 0 1 1
P, 1 1 0
Py 1 0 1

We can quickly detect the mismatchesfinand P (hey! XORY!).
This means that the bit at position 1010 has an error and neuipped. Convenient!

Think about how this might be implemented

e the memory itself doesn’t even need to know
e we can drop in some XORs to generate parity bits to be store@mary
¢ we XOR again to regenerate parity bits for retrieved values

e still more XOR to do correction

This works even if the parity bit is the one that has an ertqust ends up “fixing” the parity bit.

It does not work for 2-bit errors.

12

