
Computer Science 220
Assembly Language & Comp. Architecture
Siena College
Fall 2011

Topic Notes: Building Memory

We’ll next see how we can use flip-flop devices to construct memory.

Buffers
We’ve seen and used inverters.

Recall that we can put two inverters in series to construct abuffer.

We represent a buffer as a triangular symbol (like an inverter) but with no circle at the end.

Its effect is to slow down and boost the signal strength of thecurrent in the circuit.

Recall that large fan-out when wiring physical circuits can be problematic if there is not enough
current to drive subsequent gates. A buffer can take care of that.

We also may need to delay the propagation of a value through a circuit to deliver it to the desired
place at the same time as some other value. Buffers can come in handy for this.

Tristate Buffers
So far, we have thought almost exclusively about each wire orgate output as having a value of 0
or 1. It can be easy to think about the value 0 as the absence of avalue, but that’s not true.

Being connected to ground or to a low gate output is different than not being connected.

You can think of the wire as transmitting some value. A 0 valuemeans the wire like a pipe spilling
out 0’s, a 1 value is like a pipe spilling out 1’s.

Or think of it like a pipe with hot water flowing vs. a pipe with cold water flowing.

But a disconnected wire or a pipe with no water source isn’t spilling out anything.

So even in our circuits so far, there could be a wire or a gate not connected to anything. Sometimes,
this is just what we want.

To accomplish this, we next look at a device called atristate buffer.

in

control

out



CS 220 Assembly Language & Computer Architecture Fall 2011

When the control line is high, the device connects the output to the input (with some amplifying
and delay properties), like a buffer.

When control is low, it behaves like a broken wire – physicallydisconnected. This is often referred
to as ahigh impedence state.

We will not be concerned about how to construct such a device –they’re available to us as building
blocks.

As an example of where this device can be useful, suppose we have a point in a circuit where we
know that exactly one of a number of outputs will be high, as ina MUX:

Logisim Circuit: ˜jteresco/shared/cs220/examples/logisim/4to1mux.circ

We couldn’t just tie the outputs of the ANDs together becausewe can’t feed back the output of
some gates through the output lines of others. We had to feed them through an OR gate to the
output.

2



CS 220 Assembly Language & Computer Architecture Fall 2011

Logisim Circuit:
˜jteresco/shared/cs220/examples/logisim/4to1muxtristate.circ

Since only one of the tristate buffers will be connected, we can safely do what looks like a “wired
or”.

Note: the Logisim device is thecontrolled buffer (or, if we want to invert as part of the device, the
controlled inverter).

Driving the Bus

We can use this idea to allow one of multiple inputs to be placed onto a wire for transmission
somewhere else.

Such a wire is called abus.

A bus must have exactly 0 or 1 “drivers”.

This will be useful when we want to connect up our CPUs to a bank of memory.

In that case, tristate buffers can be used to determine whether the bus is being used to send data
from the CPU to memory, from the memory to the CPU, or neither. Both can’t be done at once.

Activating multiple tristate buffers resulting in multiple bus drivers can cause problems. At best,
we will have conflicting signals and get incorrect behavior.At worst, we would sendi signals
backwards through our gates, resulting in potential damageto the components.

Building Memory Devices
We often measure the sizes of memory using terms like “kilobyte”, “megabyte”, “and gigabyte”.

3



CS 220 Assembly Language & Computer Architecture Fall 2011

Our goal is to see how to construct memory devices at that scale.

But...we’ll start much smaller. We first build a device that can store 4 bits of memory:

logn 4x1

D

A

RD/WRT

CS

Let’s look at what each input and output means here.

1. 4 × 1: 4 is the number of units of memory, 1 is theaddressability, the smallest number of
bits we can address. “4 memory locations of 1 bit each.”

2. D is a bidirectional data bus:

• when we want to store a value in the memory, we put that value onD as input to the
memory circuit

• when we want to retrieve a value from memory, its value is put on D as output from
the memory circuit

• D consists of a number of wires equal to the addressability of the memory

3. A is the address lines

• need to be able to select from among alln units of memory

• this requireslog
2
(n) address lines

• the value onA specifies which bit(s) of the memory are storing a copy of whatis on
the data bus (a memory write) or are placing their value for output onto the data bus (a
memory read)

4. RD/WRT selects whether the chip should be reading or writing – “who’s driving the bus?”

5. CS is chip select. Are we doing anything with this chip right now? In practice, this is often
an active low control, meaning the chip is selected when the input is 0, disabled when the
input is 1. To keep things simple in our current discussion, we will assume an active high
chip select.

How can we build this out of components we have seen?

We use 4 D-type flip-flops and connect them up to our inputs, as appropriate.

4



CS 220 Assembly Language & Computer Architecture Fall 2011

decoder

D

CLK

D00

Q

D

CLK

D01

Q

D

CLK

D10

Q

D

CLK

D11

Q

D
RD/WRT

CS

A
2

00

11
10
01

How it works:

1. Correct address line is set high by the decoder. This will disable 3 of the 4CLK inputs and
3 of the 4 AND gates that maskQ outputs of the flip-flops.

2. Data line is fed as input, unconditionally, to all flip-flops.

3. WhenCS (“chip select”) is low, all 4 input AND gates are low, inhibiting anyCLK input.
Also, the AND gate at the output is low, meaning the tristate buffer prevents any signal from
the circuit from being written to the data bus.

4. WhenRD/WRT is high, an input to all 4 input AND gates is low, soCLK is inhibited.

5. WhenRD/WRT is low, the AND gate controlling the tristate buffer is low, meaning the
output is not being sent toD.

6. When bothCS andRD/WRT are high, the output being sampled from one of the D flip-
flops is being passed through toD. One of the tri-state buffers is “driving the bus”.

7. WhenCS is high andRD/WRT is low, we assume someone else is “driving the bus” and
is putting the values on the bus that we wish to store in one of our flip-flops.

5



CS 220 Assembly Language & Computer Architecture Fall 2011

We have a 4-bit memory!

4×4 Memory

We normally don’t think about storing values in memory just one bit at a time.

How about building a device that can store 4 4-bit values?

2 4x4

D

A

RD/WRT

CS

4

Here, we have the same 2 address lines, aRD/WRT line and a chip select, but instead of a single
data line, we have 4 data lines.

We will build our 4×4 device out of 4 4×1 devices:

4

D
A

RD/WRT
CS

4x1

D
A

RD/WRT
CS

4x1

D
A

RD/WRT
CS

4x1

D
A

RD/WRT
CS

4x1

A
D

RD/WRT
CS

D3D2D1D0

2

Note that the data busD is actually 4 wires, and we only connect one of the 4 to each of the 4×1’s.

4×8 Memory

So far, we’ve gone from the D-type flip flip, (which we can thinkof as a 1×1 memory device) to
a 4×1 by adding 2 address lines, and using a decoder to have those address lines activate one of 4
1×1 devices.

Then we went from 4×1 to 4×4 by having 4 data lines, each of which goes to one of the 4×1
devices.

6



CS 220 Assembly Language & Computer Architecture Fall 2011

We could do the same thing for a 4×8 device – 8 data lines, each of which is fed into a separate
4×1 device.

But if we already have 4×4 devices, we can expand to 4×8:

D4−D7

D
A

RD/WRT
CS

4x4

D
A

RD/WRT
CS

4x4

A
D

RD/WRT
CS

D0−D3

2

8

4 4

That’s 4 bytes of memory.

1KB memory

Now let’s consider how we might build a kilobyte of memory outof our 4×8 devices.

The device we’re trying to build will look like this:

10 1Kx8

D

A

RD/WRT

CS

8

We’ll need 256 4×8 devices, each of which looks like this:

2 4x8

D

A

RD/WRT

CS

8

7



CS 220 Assembly Language & Computer Architecture Fall 2011

We refer to each of these 4×8 devices as abank of memory.

Of our 10 address lines, 8 are used to select among the 256 banks and the other 2 select among the
4 bytes on the bank chosen.

If we think of our address lines as bitsA9A8...A0, two main possibilities come to mind for how to
organize things:

• Option 1:A1 andA0 select the byte within a bank andA9...A2 select the bank.

• Option 2:A9 andA8 select the byte within a bank andA7...A0 select the bank.

In either case, we want all 8 data lines wired to each bank, we want theRD/WRT wired to each
bank.

Our two lines to select a byte within a bank are wired to the address lines of the bank.

The other 8 address lines are passed through a decoder, and the decoder outputs are ANDed with
theCS inputs of the whole circuit then wired to theCS inputs of each bank:

8−to−256

4x8

CS

A

Bank 0

4x8

CS

A

Bank 1

4x8

CS

A

Bank 255

DECODER

A
10 2

8

.

.

.

.

.

.

CS

8



CS 220 Assembly Language & Computer Architecture Fall 2011

Which bytes are stored on which chips with the two layout options?

Bank Option 1 Option 2
0 0–3 0, 256, 512, 768
1 4–7 1, 257, 513, 769
2 8–11 2, 258, 514, 770
... ... ...

254 1016–1019 254, 510, 766, 1022
255 1020–1023 255, 511, 767, 1023

Each possible configuration has advangates and disadvantages.

Option 1 means we can lose a chip and still have large chunks ofcontiguous memory available.

Option 2 has advantages for chip layout.

SIMM Layout

You have probably seen and maybe used memory chips of the SIMM(or, single in-line memory
module) type.

64 data lines
7 address lines

Suppose we have 1 KB of memory of 8-bit bytes.

This requires 10 bits for full addressing, 8 data lines.

But this is not normally how it would be set up.

More likely, you would find 64 data lines and only 7 address lines.

What does this mean?

It’s really an 8-byte addressable memory. We load/store memory in chunks of 8 bytes at a time, so
there are only 128 addressable chunks.

When memory is requested, say address 1:

A = A9A8...A0 = 0000000001

The 7 high bits of the addressA9...3 = 0000000 are sent to the SIMM on the address lines.

We get back bytes 0–7, even though we only wanted 1. It’s up to the CPU, which still has the full
address (includingA2A1A0) to pick out the byte it’s interested in.

To access location 517 = 1000000101, we request 8-byte chunk64, and take byte 5 of those that
come back.

9



CS 220 Assembly Language & Computer Architecture Fall 2011

This memory is organized using “Option 2” from our discussion about how to arrange memory
among multiple banks.

This may at first seem wasteful, but the memory chip can get all8 bytes easily and more wires in
and out means we can transfer more memory more quickly.

Plus.. there’s a good chance that any memory access will be followed by additional memory access
to nearby locations (think – local variables, an array, sequential program text).

This locality is a natural feature of most programs.

All machines today have memory that is addressable in some chunk larger than one byte.

The decisions about how we break this down have ripple effects throughout the architecture. We
will soon see this in much detail.

Error Detection and Correction
You have probably heard abouterror correcting memory. This is a memory circuit that can still
give the correct answer even if a bit has mistakenly been changed. This could happen from a bad
gate in a flip-flop, for example.

In order to do any kind of error correction, we need to build insome redundancy.

We can detect a single-bit memory error by adding aparity bit. The parity bit is set to tell whether
the original value in memory has an odd or even number of bits set to 1. If we later read the value
from memory and the parity bit no longer accurately reflects the odd/evenness of the number of
bits set to 1, we know something has gone wrong.

For example, if we have an 8-bit data value and we want to maintain even parity, we add a 9th bit
that makes the total number of bits that are set an even number:

byte even parity bit
00000000 0
00000001 1
01110100 0
11000111 1
11111111 0

From this, we can check, each time we retrieve a byte, that is has even paity. If not, we know that
something is wrong.

But that’s all it tells us. Since we don’t know which of the 9 bits are wrong, we can’t fix it.

Some of you may have had computers that crash with a Blue Screenof Death saying that a memory
parity error was detected.

This is not just a Windows phenomenon - I have had Unix systemscrash with a kernel error that
a memory parity error was detected. The idea is that since we know there was a memory error
but we don’t know how to fix it, it’s better to halt the system rather than risk producing incorrect
results.

10



CS 220 Assembly Language & Computer Architecture Fall 2011

To both detect and fix an error, we will need to store more extrabits.

We consider here an error correction scheme that can fix a single bit error but at the expense of 4
extra bits for each byte of memory (50% overhead).

We use 12 bits to represent an 8-bit value. We number the bits 12-1 and use the ones whose
numbers are powers of 2 as parity bits:

12 11 10 9 8 7 6 5 4 3 2 1
1100 1011 1010 1001 10000111 0110 0101 01000011 0010 0001

We use the parity bits as follows:

1. Position 1 stores the even parity of odd-numbered bits

2. Position 2 stores the even parity of bits whose number has the 2’s bit set

3. Position 4 stores the even parity of bits whose number has the 4’s bit set

4. Position 8 stores the even parity of bits whose number has the 8’s bit set

So to store the value 94 = 01011110 we first fill in the data bits:

0 1 0 1 1 1 1 0
1100 1011 1010 1001 10000111 0110 0101 01000011 0010 0001

Position 1 stores the even parity of the bits at 3, 5, 7, 9, 11. 4of those are set to 1, so we set that
bit to 0.

Position 2 stores the even parity of the bits at 3, 6, 7, 10, 11.3 of those are set to 1, so we set that
bit to 1.

Position 4 stores the even parity of the bits at 5, 6, 7, 12. 3 ofthose are set to 1, so we set that bit
to 1.

Position 8 stores the even parity of the bits at 9, 10, 11, 12. 2of these are set to 1, so we set that
bit to 0.

0 1 0 1 0 1 1 1 1 0 1 0
1100 1011 1010 1001 10000111 0110 0101 01000011 0010 0001

When we retrieve a value from memory, we can make sure it’s OK bycomputing the 4 parity bits
and comparing to the stored parity bits.

If they all match, we’re OK.

If there’s any mismatch, we know there’s an error.

Let’s introduce an error into our stored value. We’ll changethe third bit to a 1.

0 1 1 1 0 1 1 1 1 0 1 0
1100 1011 1010 1001 10000111 0110 0101 01000011 0010 0001

So we recompute the parity bits on the value we retrieved, andcompare to the stored bits:

11



CS 220 Assembly Language & Computer Architecture Fall 2011

bit computed stored match
P1 0 0 0
P2 0 1 1
P4 1 1 0
P8 1 0 1

We can quickly detect the mismatches inP2 andP8 (hey! XOR!).

This means that the bit at position 1010 has an error and must be flipped. Convenient!

Think about how this might be implemented

• the memory itself doesn’t even need to know

• we can drop in some XORs to generate parity bits to be stored in memory

• we XOR again to regenerate parity bits for retrieved values

• still more XOR to do correction

This works even if the parity bit is the one that has an error. It just ends up “fixing” the parity bit.

It does not work for 2-bit errors.

12


