
Computer Science 220
Assembly Language & Comp. Architecture
Siena College
Fall 2010

Topic Notes: Pipelines

We have all seen and experienced examples of pipelining in our daily lives. The book uses a
laundry analogy (Figure 4.25), but any kind of “assembly line” type of operation might be a good
example.

The laundry analogy is a good one. Consider how much more quickly laundry can be finished if
we take advantage of the fact that the washer and dryer (and, in the book’s example, the folder
and the storer) can all operate in parallel, and each stage can start doing its work as soon as the
previous stage completes its work. We don’t process a singleload of laundry any more quickly,
but the overlap in successive loads leads to a faster overallcompletion time.

Similar ideas can be used to create a pipeline of instructions being executed by a processor. MIPS
instructions can be executed in phases. These phases can be used to create such a pipeline.

We’ll consider a pipeline for MIPS, which is typical of many RISC pipelines.

We have seen the instructions in our MIPS subset include five steps:

1. IF : instruction fetch

2. ID : register read and instruction decode

3. EX: execute or calculate address

4. MEM : memory read or write

5. WB: write back register

For our example, we will assume that the register access stages cost 100 time units each, while
memory access and ALU operations cost 200.

Figure 4.26 in the text shows how long the different instructions in our MIPS subset will take given
these latencies.

Figure 4.27 in the text shows the single-cycle and a simple pipelined execution.

Note that the speed of our pipeline in this case is limited to the speed of slowest component. A
single instruction now takes as much as 900ps to complete.

Note also that the register accesses are strategically set up so that a register read takes place in the
second half of a 200ps slot and the register write takes placein the first half. This will be beneficial
later on.

Figure 4.28 shows a symbolic representation of the execution of anadd instruction showing which
components are used in each step.

CS 220 Assembly Language & Computer Architecture Fall 2010

The MIPS instruction set was designed with pipelines in mind, so it has features that make pipelin-
ing easier:

1. all instructions are the same length, allowing the nextIF in the pipeline to proceed immedi-
ately

2. there are very few instruction formats, allowing both register read and instruction decode to
be in theID pipeline stage

3. the limitation on memory access to just thelw andsw instructions allowsEX to combine
execution and address calculation

4. memory alignment means we always retrieve the entire instruction in a single memory access

A typical RISC system might have a 5-stage pipeline like this.

A system with a more complex instruction set may have a 12-18 stage pipeline.

Goal: 100-200 stage pipelines to get very significant speedups.

Many architectures now have multiple pipelines as well.

The original Pentium had two pipelines, and a smart compilercould keep both pipelines busy,
effectively doubling the number of instructions completedin the same number of cycles.

If 2 is good, why not 4 or more? We’d have too much duplication of hardware and not enough use
of it.

Another option: just have multiple functional units, not all stages of the pipeline.

FPUs

IF ODID X WB

X

X

X

X

ALUs
LOAD

STORE

This is especially useful if the execute stage takes longer anyway.

This is asuperscalar processor.

Hazards

2

CS 220 Assembly Language & Computer Architecture Fall 2010

In the ideal situation, we can always be executing an instruction at each stage of the pipeline to
achieve maximum throughput. However, we need to make sure that the end result of a pipelined
execution is identical to a purely sequential execution. Several things, calledhazards, can happen
that introduce problems that will prevent the ideal throughput.

Hazards fall into three categories.

1. Structural hazards occur when two instructions executing in a pipeline need thesame phys-
ical hardware (memory or ALU) at the same time – the implementation and instruction set
design can avoid these

2. Data hazards occur when an instruction needs to access data that has not yet been produced
by another instruction further ahead in the pipeline but which has not yet completed its
execution

For example:

add $s0, $t0, $t1
sub $t2, $s0, $t3

Here, the value in register$s0 needs to be read for thesub instruction before it has been
written by theadd instruction.

A simple solution is to have the compiler introduce dummy instructions, orbubbles, to stall
the pipeline.

This is costly, and there’s really no reason to wait to store the result of theadd into$s0 and
then retrieve it from$s0 for thesub instruction. It has been computed in time, so we can
forward or bypass the value from one internal state register to another, as shown in Figure
4.29 of P&H.

Figure 4.30 shows that even this is not always sufficient to avoid a bubble – using a value
being read from memory in one instruction as an operand in thenext is impossible without
stalling.

3. Control hazards occur when a branch instruction is executed, but subsequentinstructions are
already in the pipeline behind it – instructions that are notsupposed to be executed at all!

If we notice a branch, we need to go back into our pipeline and cancel any instructions that
we’ve started into the pipeline that are no longer going to happen because there was a branch.

This will introduce bubbles into the pipeline. We can’t start doing more useful work in that
slot in the pipeline, because we’d already have had to fetch the instruction and we don’t
know what instruction that will be.

The bubbles might be inserted by a compiler, in which case we don’t have to worry during
execution since the items in the pipeline after the branch are not going to do any real work.

The big danger is that the cancelled instruction could destroy some context before we realize
it’s not supposed to happen. In this simple pipeline, we’re probably safe, since nothing is
written back to a register or memory until the last step, but longer pipelines may require
more care.

3

CS 220 Assembly Language & Computer Architecture Fall 2010

Delayed Branching and Branch Prediction
We can try to minimize the effect of control hazards with two techniques:delayed branching and
branch prediction.

Consider the execution of this code in a pipelined system:

j somewhere
add $3,$4,$5

The jump/branch is in the pipeline, but by the time we know it’s a branch, the add is already in the
pipeline.

A compiler can do this on purpose – we know the add is going to happen even though we’re taking
a branch before we get there.

Most modern architectures have adelayed branch of 1 or 2 instruction cycles to allow this opti-
mization.

If we don’t have something to do in thosedelay slots, the compiler may have to fill them with
nops.

This helps eliminate some bubbles in the pipeline, but when we do havenops, that’s still a bubble.

Consider a simple for loop:

int sum = 0;
for (int i = 1; i <= 10; i++) sum += i;

which might be translated into MIPS as:

add $s1, $0, $0 # sum = 0
addi $t1, $0, 1 # i = 1

loop: slti $t2, $t1, 11 # compare i to 11
beq over # skip loop if i is not < 11
add $s1, $s1, $t1 # sum += i
addi $t1, $t1, 1 # i++
j loop # back around

over:

If we have a branch delay slot, we can swap theaddi that performsi++ and thej that goes back
to the top of the loop. We always want to do theaddi, even though it would then comeafter the
j.

Compilers (or programmers) can also unroll loops to help eliminate branches to help keep pipelines
full. The code above might be rewritten as:

4

CS 220 Assembly Language & Computer Architecture Fall 2010

add $s1, $0, $0 # sum = 0
addi $s1, $s1, 1 # sum += 1
addi $s1, $s1, 2 # sum += 2
addi $s1, $s1, 3 # sum += 3
addi $s1, $s1, 4 # sum += 4
addi $s1, $s1, 5 # sum += 5
addi $s1, $s1, 6 # sum += 6
addi $s1, $s1, 7 # sum += 7
addi $s1, $s1, 8 # sum += 8
addi $s1, $s1, 9 # sum += 9
addi $s1, $s1, 10 # sum += 10

This is generally a good thing anyway because branches aren’t doing useful work – they’re just
just wasted time. In this case, we reduce from 54 instructions in the original code to only 11. But
we could only do this by noticing that the loop was going to runexactly 10 times and replicating
the appropriate code.

But what about conditional branches?

bne loop
add

If we take the branch, then the add instruction should never have happened and we have to kill the
instruction.

Branch prediction is very useful – try to determine which instruction is most likely to be executed
after a branch in an attempt to keep the pipeline going.

Consider

if (C)
S1

else
S2

Which is more likely? Programmers probably make the “then” part the more likely case.

So a compiler might want to set things up to start pipelining S1 after the condition is checked.

How about a while loop or a for loop?

while (C)
S1

Here,C will be false only once for the life of the while loop, so the best assumption is to predict a
successful branch (another time around the loop).

5

CS 220 Assembly Language & Computer Architecture Fall 2010

The UltraSparc III actually has special branch instructions that a compiler can use when it knows
a certain branch is likely to be taken the vast majority of thetime.

Some rules of thumb:

1. If a branch leads deeper into code, assume the branch will fail.

2. Otherwise, assume the branch will be taken.

This gives about an 80% success rate for human-written code.

Today’s branch prediction techniques in optimizing compilers are more intelligent and clever and
can get more like 98%.

No matter how good our branch prediction is, it will sometimes fail and we need to be able to make
sure instructions can be cancelled.

One possibility: allow instructions to do everything but store their result until we’re absolutely
sure.

Another headache: multiple conditional branches in the pipeline.

Pipelined Datapath and Control
We will now consider how to construct a data path and control to manage the 5-stage pipeline for
our MIPS subset.

In Figure 4.33, we see the single-cycle data path we looked atbefore, redrawn to show the pipeline
phases.

For the most part, information flows left-to-right in this diagram. The exceptions (in blue) represent
hazards:

• WB puts a result back into the register file – this is a data hazard

• MEM may replace thePC with a branch/jump target – a control hazard

Figure 4.34 shows instructions being executed by a pipeline.

• stages are labeled by the components being used in each

• note that the register file is written in the first half of a cycle, and read in the second half; this
reasonable assumption helps us avoid some potential hazards later on

• in this case, no hazards arise

We will need to add registers to our data path to support pipelining. These registers are shown in
Figure 4.35.

6

CS 220 Assembly Language & Computer Architecture Fall 2010

• each set of registers holds the values passed between each pair of adjacent stages

• each is large enough to hold the necessary values

The text presents a series of figures showing the active partsof the pipeline during the execution:

• The top half of Figure 4.36 shows theIF stage:

– the instruction from memory is retrieved and stored in theIF/ID pipeline registers

– PC+4 is computed and stored in theIF/ID pipeline registers

– The PC is updated with either PC+4 or the result of a branch instruction

• The bottom half of Figure 4.36 shows theID stage:

– the instruction stored in theIF/ID pipeline registers is used to retrieve 2 values from
the register file, which are both sent to theID/EX pipeline registers

– the immediate field of the instruction is sign-extended to 32bits and stored in the
ID/EX pipeline registers

– the PC+4 value is passed along from theIF/ID pipeline registers to theID/EX pipeline
registers for use later

– we don’t need all of these values, but we don’t necessarily know which, yet, so we pass
them all along

• Figure 4.37 shows theEX stage for alw instruction

– the sign-extended immediate value is added to the base register, both of which come
from theID/EX pipeline registers

– this sum (the effective address for the memory access) is stored in theEX/MEM
pipeline registers

• Figure 4.38 (top) shows theMEM stage for alw instruction

– the effective address stored in theEX/MEM pipeline registers is used to retrieve a
value from the data memory

– this value is stored in theMEM/WB pipeline registers

• Figure 4.38 (bottom) shows theWB stage for alw instruction

– the value retrieved from memory, saved in theMEM/WB pipeline registers, is sent
back to the register file for storing

• Figure 4.41 adds extra values to the pipeline registers in recognition of the fact that the regis-
ter number needs to be retained for theWB stage (if we don’t, we’d be using the destination
register from a different instruction!)

7

CS 220 Assembly Language & Computer Architecture Fall 2010

• Figure 4.42 highlights the parts of the datapath that are used for lw

• Figures 4.39 and 4.40 show the completion of asw instruction

– here, we need to remember the value from the register file thatis to be stored in memory.
It must be passed along during theEX phase from theID/EX registers to theEX/MEM
registers

– duringMEM , we store the value at the location specified by the effectiveaddress, both
coming from theEX/MEM pipeline registers

– theWB stage does nothing forsw

• Figure 4.43 shows a sequence of instructions in a pipeline, and Figure 4.45 shows the in-
structions in execution at the fifth step of this execution sequence

Augmenting control to support a pipelined control may seem daunting, but it really is not as bad
as we’d expect.

We can use the same control lines as we did for the single-cycle implementation, but each stage
should be using the control as set for the instruction it is executing.

Control values can be stored in the pipeline registers to makethis happen.

Figure 4.46 shows the pipelined data path with the control added.

We need only store control signals at each stage that are to beused in that or in subsequent stages
(Figure 4.50)

Figure 4.51 shows the complete pipelined datapath.

Dealing with Hazards
We noticed earlier that our pipelines cannot always operateat full capacity.

• some instructions do not need to use all stages of the pipeline

• instructions may depend on values computed in prior instructions that are still in the pipeline
(data hazards)

• instructions may begin executing before a previous jump or branch is taken (control hazards)

Data Hazards

We first look at enhancements to our pipelined datapath and control that will deal with data hazards.

Figure 4.52 shows the dependencies in an unfortunate instruction sequence

• $2 is computed by the first instruction and is used by the next 4.

8

CS 220 Assembly Language & Computer Architecture Fall 2010

• The second and third instructions need the value of$2 before the first instruction has had a
chance to store it.

• The last two instructions are fine, remembering that values are written to the register file in
the first half of the clock cycle, read in the second half.

Upon closer inspection, though, we see that the values needed by the second and third instructions
are available in pipeline registers, as shown in Figure 4.53.

• the value for$2 in theand instruction is in theEX/MEM pipeline registers

• the value for$2 in theor instruction is in theMEM/WB pipeline registers

We need to detect when these conditions occur and account forthem. There are two main cases to
deal with:

1. the destination register (Rd) of the instruction in theMEM phase is one of the source regis-
ters (Rs or Rt) of the instruction in theEX phase

2. the destination register (Rd) of the instruction in theWB phase is one of the source registers
(Rs or Rt) of the instruction in theEX phase

For the first case, we need to divert a value from theEX/MEM pipeline registers as an input to the
ALU. In the second, we take a value from theMEM/WB pipeline registers.

The text breaks this info four cases we can check for:

1a. EX/MEM.RegisterRd = ID/EX.RegisterRs

1b. EX/MEM.RegisterRd = ID/EX.RegisterRt

2a. MEM/WB.RegisterRd = ID/EX.RegisterRs

2b. MEM/WB.RegisterRd = ID/EX.RegisterRt

In our example from Figure 4.52, the “sub-and” hazard is of type 1a and the “sub-or” hazard is of
type 2b.

So we want to detect these conditions and perform appropriate forwarding only when it matters –
that is, when the first instruction is actually going to writethe ALU result into a register (i.e. its
RegWrite control line is 1).

We can also skip forwarding if the destination register is$0 since it will never be changed to have
any value other than 0.

Figure 4.54 shows the addition of a forwarding unit that can present inputs to the ALU from
pipeline registers instead of from the register file. The forwarding unit handlesEX or MEM
hazards by setting two new control lines,ForwardA andForwardB.

TheForwardA andForwardB lines can be set according to these rules:

9

CS 220 Assembly Language & Computer Architecture Fall 2010

• for anEX hazard:

if (EX/MEM.RegWrite and (EX/MEM.RegisterRd != 0)
and (EX/MEM.RegisterRd = ID/EX.RegisterRs))

ForwardA = 10
if (EX/MEM.RegWrite and (EX/MEM.RegisterRd != 0)

and (EX/MEM.RegisterRd = ID/EX.RegisterRt))
ForwardB = 10

• for aMEM hazard:

if (MEM/WB.RegWrite and (MEM/WB.RegisterRd != 0)
and (MEM/WB.RegisterRd = ID/EX.RegisterRs))

ForwardA = 01
if (MEM/WB.RegWrite and (MEM/WB.RegisterRd != 0)

and (MEM/WB.RegisterRd = ID/EX.RegisterRt))
ForwardB = 01

However, the rules forMEM do not take into account that the forwarding fromMEM should not
take place if there is anEX hazard for the same destination register (adouble data hazard), since
that value would overwrite (in a non-pipelined world) the value in the register to be used by the
EX instruction. The rules forMEM are then augmented to:

if (MEM/WB.RegWrite and (MEM/WB.RegisterRd != 0)
and not (EX/MEM.RegWrite and (EX/MEM.RegisterRd != 0)

and (EX/MEM.RegisterRd = ID/EX.RegisterRs))
and (MEM/WB.RegisterRd = ID/EX.RegisterRs))

ForwardA = 01
if (MEM/WB.RegWrite and (MEM/WB.RegisterRd != 0)

and not (EX/MEM.RegWrite and (EX/MEM.RegisterRd != 0)
and (EX/MEM.RegisterRd = ID/EX.RegisterRt))

and (MEM/WB.RegisterRd = ID/EX.RegisterRt))
ForwardB = 01

Figures 4.56 and 4.57 show the data path augmented with additional lines and a forwarding unit
that can resolve data hazards.

We next consider an even more unfortunate data hazard, a “load-use” hazard as shown in Figure
4.58.

This one cannot be resolved through forwarding – the value has not yet been retrieved from the
data memory by the time it is needed.

In his case, we need tostall the pipeline to wait for the value to become available, as shown in
Figure 4.59.

10

CS 220 Assembly Language & Computer Architecture Fall 2010

This is accomplished by adding ahazard detection unit.

Using our notation from before, we know a stall is necessary when:

ID/EX.MemRead and
((ID/EX.RegisterRt = IF/ID.RegisterRs) or
(ID/EX.RegisterRt = IF/ID.RegisterRt))

Note that we are detecting this condition as early as possible – when the offending sequence in-
structions are in theIF andID stages. This makes it easier to stall.

The stall is accomplished by adding abubble to the pipeline – an instruction that does nothing, a
nop, or “no op”.

This requires that:

• the PC is not updated

• theIF/ID pipeline registers are not updated

• the control entries in theID/EX pipeline register are loaded with all 0’s, which results in the
bubble/nop.

The data path augmented with a hazard detection unit is shownin Figure 4.60.

Stalls reduce the performance – we’re spending time executing a nop instead of meaningful in-
structions. However, they are essential to ensure correct behavior.

An optimizing compiler should be aware of the details of the pipeline and can rearrange instruc-
tions (in many cases) to avoid the need for a stall at execution time.

Control Hazards

Recall that a control hazard occurs when a branch/jump instruction is being executed and subse-
quent (partially-executed) instructions in the pipeline need to be cancelled since they never should
have been executed.

The specifics of our pipeline mean that a conditional branch’s outcome is not known until the
MEM phase.

Figure 4.61 shows a branch instruction that results in a control hazard – instructions already in the
pipeline that are not to be executed are flushed (their control lines are set to 0).

Figure 4.62 shows how we can reduce the cost of a control hazard by adding hardware to determine
the result of a conditional branch sooner (duringID):

• The branch target adder is moved toID .

11

CS 220 Assembly Language & Computer Architecture Fall 2010

• An equality checker is added that compares the values comingout of the register file that can
quickly determine the result of abeq (or bne).

Another technique that works well with short pipelines (such as our 5-stage pipeline) is the use of
a branch delay slot.

• Here, wealways execute the instruction immediately following a branch or jump.

• This way, a programmer or (hopefully) a compiler can reorderinstructions so that some
useful work can be done in the slot after the branch.

• This is not always possible, so anop instruction may need to be inserted in some cases.

• However, it is a quite effective way to reduce the cost and frequency of control hazards. Real
implementations of MIPS (among other ISAs) make use of branch delay slots.

Figure 4.64 shows some examples of how code can be reordered to take advantage of branch delay
slots.

We already discussed some branch prediction techniques. The text discusses some of them in a bit
more detail.

12

