Computer Science 220

Assembly Language & Comp. Architecture
SIENAcollege siena College

Computer Science Fall 2010

Topic Notes: Pipelines

We have all seen and experienced examples of pipelining iirdaily lives. The book uses a
laundry analogy (Figure 4.25), but any kind of “assemblg’litype of operation might be a good
example.

The laundry analogy is a good one. Consider how much more lguemlndry can be finished if
we take advantage of the fact that the washer and dryer (aniigibook’s example, the folder
and the storer) can all operate in parallel, and each stagstas doing its work as soon as the
previous stage completes its work. We don’t process a sionglk of laundry any more quickly,
but the overlap in successive loads leads to a faster owenalpletion time.

Similar ideas can be used to create a pipeline of instrusti@ing executed by a processor. MIPS
instructions can be executed in phases. These phases caad®create such a pipeline.

We’ll consider a pipeline for MIPS, which is typical of many$T pipelines.

We have seen the instructions in our MIPS subset include tepess

1. IF: instruction fetch

2. ID: register read and instruction decode
3. EX: execute or calculate address

4. MEM : memory read or write

5. WB: write back register

For our example, we will assume that the register accesestagst 100 time units each, while
memory access and ALU operations cost 200.

Figure 4.26 in the text shows how long the different insinret in our MIPS subset will take given
these latencies.

Figure 4.27 in the text shows the single-cycle and a simgdelpied execution.

Note that the speed of our pipeline in this case is limitechtogpeed of slowest component. A
single instruction now takes as much as 900ps to complete.

Note also that the register accesses are strategicallpset that a register read takes place in the
second half of a 200ps slot and the register write takes jtetbe first half. This will be beneficial
later on.

Figure 4.28 shows a symbolic representation of the exatofianadd instruction showing which
components are used in each step.

CS 220 Assembly Language & Computer Architecture Fall 2010

The MIPS instruction set was designed with pipelines in naadt has features that make pipelin-
ing easier:

1. all instructions are the same length, allowing the hiéxn the pipeline to proceed immedi-
ately

2. there are very few instruction formats, allowing bothisegy read and instruction decode to
be in thelD pipeline stage

3. the limitation on memory access to just the& andsw instructions allow€X to combine
execution and address calculation

4. memory alignment means we always retrieve the entireuctsbn in a single memory access

A typical RISC system might have a 5-stage pipeline like this.

A system with a more complex instruction set may have a 12dd@ipeline.
Goal: 100-200 stage pipelines to get very significant spegdu

Many architectures now have multiple pipelines as well.

The original Pentium had two pipelines, and a smart comgiterdd keep both pipelines busy,
effectively doubling the number of instructions compleir@the same number of cycles.

If 2 is good, why not 4 or more? We’d have too much duplicatibhardware and not enough use
of it.

Another option: just have multiple functional units, ndtsthges of the pipeline.

This is especially useful if the execute stage takes longgwvay.

This is asuperscalar processor.

Hazards

CS 220 Assembly Language & Computer Architecture Fall 2010

In the ideal situation, we can always be executing an instm@t each stage of the pipeline to
achieve maximum throughput. However, we need to make satetlih end result of a pipelined
execution is identical to a purely sequential executiorvesas things, calledhazards, can happen
that introduce problems that will prevent the ideal thrquggh

Hazards fall into three categories.

1. Structural hazards occur when two instructions executing in a pipeline needstirae phys-
ical hardware (memory or ALU) at the same time — the implem g and instruction set
design can avoid these

2. Data hazards occur when an instruction needs to access data that hastrizeem produced
by another instruction further ahead in the pipeline butalvhias not yet completed its
execution

For example:

add $s0, $t0, $t1
sub $t2, $s0, $t3

Here, the value in registés0 needs to be read for theub instruction before it has been
written by theadd instruction.

A simple solution is to have the compiler introduce dummyringions, orbubbles, to stall
the pipeline.

This is costly, and there’s really no reason to wait to stbeerésult of thexdd into $s0 and
then retrieve it frontss0 for the sub instruction. It has been computed in time, so we can
forward or bypass the value from one internal state register to another, agsho Figure
4.29 of P&H.

Figure 4.30 shows that even this is not always sufficient todcaa bubble — using a value
being read from memory in one instruction as an operand iméxéis impossible without
stalling.

3. Control hazards occur when a branch instruction is executed, but subsedqusnictions are
already in the pipeline behind it — instructions that aresugiposed to be executed at all!

If we notice a branch, we need to go back into our pipeline amtel any instructions that
we've started into the pipeline that are no longer going foples because there was a branch.

This will introduce bubbles into the pipeline. We can't s@doing more useful work in that
slot in the pipeline, because we’'d already have had to fétehrtstruction and we don’t
know what instruction that will be.

The bubbles might be inserted by a compiler, in which case avet thave to worry during
execution since the items in the pipeline after the branemat going to do any real work.

The big danger is that the cancelled instruction could dgstome context before we realize
it's not supposed to happen. In this simple pipeline, wet@pbly safe, since nothing is
written back to a register or memory until the last step, bager pipelines may require
more care.

CS 220 Assembly Language & Computer Architecture Fall 2010

Delayed Branching and Branch Prediction

We can try to minimize the effect of control hazards with twohniquesdelayed branching and
branch prediction.

Consider the execution of this code in a pipelined system:

] sonmewhere
add $3, $4, $5

The jump/branch is in the pipeline, but by the time we knos/étbranch, the add is already in the
pipeline.

A compiler can do this on purpose — we know the add is going ppéa even though we're taking
a branch before we get there.

Most modern architectures haved@ayed branch of 1 or 2 instruction cycles to allow this opti-
mization.

If we don’t have something to do in thosielay dots, the compiler may have to fill them with
nops.

This helps eliminate some bubbles in the pipeline, but wherlashavenops, that’s still a bubble.

Consider a simple for loop:

int sum= 0;
for (int i =1; i <= 10; i++) sum+= i;

which might be translated into MIPS as:

add $s1, $0, $0 # sum= 0
addi $t1, $0, 1 #i =1
| oop: slti $t2, $t1, 11 # conpare i to 11
beq over # skip loop if i is not < 11
add $s1, $s1, S$t1 # sum +=
addi $t1, $t1, 1 #oi++
j loop # back around

over:

If we have a branch delay slot, we can swapdkei that performs ++ and thg that goes back
to the top of the loop. We always want to do thedi , even though it would then conadter the

] .

Compilers (or programmers) can also unroll loops to helpiekte branches to help keep pipelines
full. The code above might be rewritten as:

CS 220 Assembly Language & Computer Architecture Fall 2010

add $s1, $0, $0 # sum=0

addi $s1, $s1, 1 # sum += 1
addi $s1, $s1, 2 # sum += 2
addi $s1, $s1, 3 # sum += 3
addi $s1, $s1, 4 # sum += 4
addi $s1, $si1, 5 # sum += 5
addi $s1, $s1, 6 # sum += 6
addi $s1, $s1, 7 # sum += 7
addi $s1, $s1, 8 # sum += 8
addi $s1, $s1, 9 # sum += 9
addi $s1, $si1, 10 # sum += 10

This is generally a good thing anyway because branchestateimg useful work — they’re just
just wasted time. In this case, we reduce from 54 instrustionrihe original code to only 11. But
we could only do this by noticing that the loop was going to exactly 10 times and replicating
the appropriate code.

But what about conditional branches?

bne | oop
add

If we take the branch, then the add instruction should nesree happened and we have to kill the
instruction.

Branch prediction is very useful — try to determine whichiastion is most likely to be executed
after a branch in an attempt to keep the pipeline going.

Consider
if (O
S1

el se
S2

Which is more likely? Programmers probably make the “thent {yee more likely case.
So a compiler might want to set things up to start pipelinidgagier the condition is checked.

How about a while loop or a for loop?

while (O
s1

Here,Cwill be false only once for the life of the while loop, so thesbassumption is to predict a
successful branch (another time around the loop).

5

CS 220 Assembly Language & Computer Architecture Fall 2010

The UltraSparc Il actually has special branch instructitrat a compiler can use when it knows
a certain branch is likely to be taken the vast majority ofttihne.

Some rules of thumb:

1. If a branch leads deeper into code, assume the branchawill

2. Otherwise, assume the branch will be taken.

This gives about an 80% success rate for human-written code.

Today'’s branch prediction techniques in optimizing comglare more intelligent and clever and
can get more like 98%.

No matter how good our branch prediction is, it will sometinfel and we need to be able to make
sure instructions can be cancelled.

One possibility: allow instructions to do everything bubrst their result until we're absolutely
sure.

Another headache: multiple conditional branches in thelpip.

Pipelined Datapath and Control

We will now consider how to construct a data path and controh&inage the 5-stage pipeline for
our MIPS subset.

In Figure 4.33, we see the single-cycle data path we lookbdfate, redrawn to show the pipeline
phases.

For the most part, information flows left-to-right in thissgram. The exceptions (in blue) represent
hazards:

e WB puts a result back into the register file — this is a data hazard

e MEM may replace th€C with a branch/jump target — a control hazard
Figure 4.34 shows instructions being executed by a pipeline

e stages are labeled by the components being used in each

e note that the register file is written in the first half of a ®;@nd read in the second half; this
reasonable assumption helps us avoid some potential lsdaded on

e in this case, no hazards arise

We will need to add registers to our data path to support pilpgl. These registers are shown in
Figure 4.35.

CS 220 Assembly Language & Computer Architecture Fall 2010

e each set of registers holds the values passed between aaohajacent stages

e each is large enough to hold the necessary values
The text presents a series of figures showing the active phttie pipeline during the execution:

e The top half of Figure 4.36 shows tliie stage:

— the instruction from memory is retrieved and stored inlf##D pipeline registers
— PC+4 is computed and stored in th€ID pipeline registers
— The PC is updated with either PC+4 or the result of a branchuctsbn

e The bottom half of Figure 4.36 shows tH# stage:

— the instruction stored in thi#=/ID pipeline registers is used to retrieve 2 values from
the register file, which are both sent to iR¥EX pipeline registers

— the immediate field of the instruction is sign-extended tob8 and stored in the
ID/EX pipeline registers

— the PC+4 value is passed along from lRAD pipeline registers to thiD/EX pipeline
registers for use later

— we don't need all of these values, but we don’t necessaribywwhich, yet, so we pass
them all along

Figure 4.37 shows thEX stage for d winstruction

— the sign-extended immediate value is added to the basdeedsth of which come
from thelD/EX pipeline registers

— this sum (the effective address for the memory access) redto the EX/MEM
pipeline registers

Figure 4.38 (top) shows thHdEM stage for d winstruction

— the effective address stored in tBX/MEM pipeline registers is used to retrieve a
value from the data memory

— this value is stored in thRIEM/WB pipeline registers

Figure 4.38 (bottom) shows thWB stage for d winstruction

— the value retrieved from memory, saved in M&M/WB pipeline registers, is sent
back to the register file for storing

Figure 4.41 adds extra values to the pipeline registersimgmition of the fact that the regis-
ter number needs to be retained for W& stage (if we don’t, we'd be using the destination
register from a different instruction!)

CS 220 Assembly Language & Computer Architecture Fall 2010

e Figure 4.42 highlights the parts of the datapath that ard fegd w

e Figures 4.39 and 4.40 show the completion siainstruction

— here, we need to remember the value from the register filestt@abe stored in memory.

It must be passed along during tB¥ phase from théD/EX registers to th&X/MEM
registers

— duringMEM , we store the value at the location specified by the effectildress, both
coming from theEX/MEM pipeline registers

— the WB stage does nothing f@w

e Figure 4.43 shows a sequence of instructions in a pipeline,Fagure 4.45 shows the in-
structions in execution at the fifth step of this executiogqussnce

Augmenting control to support a pipelined control may seaunting, but it really is not as bad
as we'd expect.

We can use the same control lines as we did for the singleeaggblementation, but each stage
should be using the control as set for the instruction it ecexing.

Control values can be stored in the pipeline registers to rtagéappen.
Figure 4.46 shows the pipelined data path with the contraédd

We need only store control signals at each stage that areusdgkin that or in subsequent stages
(Figure 4.50)

Figure 4.51 shows the complete pipelined datapath.

Dealing with Hazards

We noticed earlier that our pipelines cannot always opexifigll capacity.

e some instructions do not need to use all stages of the pgelin

e instructions may depend on values computed in prior ingtms that are still in the pipeline
(data hazards)

e instructions may begin executing before a previous jumpanth is taken (control hazards)

Data Hazards

We first look at enhancements to our pipelined datapath amdatohat will deal with data hazards.

Figure 4.52 shows the dependencies in an unfortunate atistnuisequence

e $2 is computed by the first instruction and is used by the next 4.

8

CS 220 Assembly Language & Computer Architecture Fall 2010

e The second and third instructions need the valug2before the first instruction has had a
chance to store it.

e The last two instructions are fine, remembering that values\aitten to the register file in
the first half of the clock cycle, read in the second half.

Upon closer inspection, though, we see that the values ddsdine second and third instructions
are available in pipeline registers, as shown in Figure.4.53

e the value for$2 in theand instruction is in theEX/IMEM pipeline registers

e the value for$2 in theor instruction is in theMEM/WB pipeline registers

We need to detect when these conditions occur and accouthigfior. There are two main cases to
deal with:

1. the destination registeRd) of the instruction in theMEM phase is one of the source regis-
ters Rs or Rt) of the instruction in th&X phase
2. the destination registeRq) of the instruction in th&VB phase is one of the source registers
(Rs or Rt) of the instruction in th&X phase
For the first case, we need to divert a value fromEXéMEM pipeline registers as an input to the
ALU. In the second, we take a value from thi=M/WB pipeline registers.

The text breaks this info four cases we can check for:

la. EX/IMEM.RegisterRd = ID/EX.RegisterRs

1b. EX/MEM.RegisterRd = ID/EX.RegisterRt

2a. MEM/WB.RegisterRd = ID/EX.RegisterRs

2b. MEM/WB.RegisterRd = ID/EX.RegisterRt

In our example from Figure 4.52, the “sub-and” hazard is pet§a and the “sub-or” hazard is of
type 2b.

So we want to detect these conditions and perform apprepoaivarding only when it matters —
that is, when the first instruction is actually going to wtite ALU result into a register (i.e. its
RegW i t e control line is 1).

We can also skip forwarding if the destination registe®@ssince it will never be changed to have
any value other than 0.

Figure 4.54 shows the addition of a forwarding unit that cassent inputs to the ALU from
pipeline registers instead of from the register file. ThenvBnding unit handle€X or MEM
hazards by setting two new control linégr war dA andFor war dB.

TheFor war dA andFor war dB lines can be set according to these rules:

9

CS 220 Assembly Language & Computer Architecture Fall 2010

e for anEX hazard:

if (EXMEM RegWite and (EX/ MEM Regi sterRd = 0)
and (EX/ MEM Regi sterRd = I Y EX Regi sterRs))
Forwar dA = 10
if (EXMEM RegWite and (EX/ MEM Regi sterRd != 0)
and (EX/ MEM Regi sterRd = I D/ EX. Regi sterRt))
ForwardB = 10

¢ foraMEM hazard:

if (MEMWB. RegWite and (MEM WB. Regi sterRd = 0)
and (MEM WB. Regi sterRd = I Y EX Regi sterRs))
Forwar dA = 01
if (MEMWB. RegWite and (MEM WB. Regi sterRd ! = 0)
and (MEM WB. Regi sterRd = I D/ EX. Regi sterRt))
ForwardB = 01

However, the rules foMEM do not take into account that the forwarding fréaEM should not
take place if there is aBX hazard for the same destination registedd@able data hazard), since
that value would overwrite (in a non-pipelined world) thduein the register to be used by the
EX instruction. The rules foMEM are then augmented to:

if (MEMWB. RegWite and (MEM WB. Regi sterRd != 0)
and not (EX' MEM RegWite and (EX/ MEM Regi sterRd != 0)
and (EX/ MEM Regi sterRd = | DJ EX Regi sterRs))
and (MEM WB. Regi sterRd = I Y EX Regi sterRs))
Forwar dA = 01
if (MEMWB. RegWite and (MEM WB. Regi sterRd != 0)
and not (EX MEM RegWite and (EX/ MEM Regi sterRd != 0)
and (EX/ MEM Regi sterRd = | D EX Regi sterRt))
and (MEM WB. Regi sterRd = I Y EX Regi sterRt))
ForwardB = 01

Figures 4.56 and 4.57 show the data path augmented with@ualitines and a forwarding unit
that can resolve data hazards.

We next consider an even more unfortunate data hazard, d-tisa” hazard as shown in Figure
4.58.

This one cannot be resolved through forwarding — the valgenioa yet been retrieved from the
data memory by the time it is needed.

In his case, we need tall the pipeline to wait for the value to become available, asvshim
Figure 4.59.

10

CS 220 Assembly Language & Computer Architecture Fall 2010

This is accomplished by addinghazard detection unit.

Using our notation from before, we know a stall is necessdrgw

| DY EX. MenRead and
((I' D EX. Regi sterRt
(I D EX. Regi sterRt

| F/ I D. Regi sterRs) or
| F/ 1 D. Regi sterRt))

Note that we are detecting this condition as early as passibvhen the offending sequence in-
structions are in th& andID stages. This makes it easier to stall.

The stall is accomplished by addindhabble to the pipeline — an instruction that does nothing, a
nop, or “no op”.

This requires that:

e the PC is not updated
e thelF/ID pipeline registers are not updated

¢ the control entries in thED/EX pipeline register are loaded with all 0’s, which resultsha t
bubble/nop.

The data path augmented with a hazard detection unit is shrofxigure 4.60.

Stalls reduce the performance — we’re spending time exeg@tinop instead of meaningful in-
structions. However, they are essential to ensure corgg\bor.

An optimizing compiler should be aware of the details of tigepne and can rearrange instruc-
tions (in many cases) to avoid the need for a stall at exettitice.

Control Hazards

Recall that a control hazard occurs when a branch/jump ictsdruis being executed and subse-
guent (partially-executed) instructions in the pipelimed to be cancelled since they never should
have been executed.

The specifics of our pipeline mean that a conditional branciitcome is not known until the
MEM phase.

Figure 4.61 shows a branch instruction that results in arobnfizard — instructions already in the
pipeline that are not to be executed are flushed (their cdiries are set to 0).

Figure 4.62 shows how we can reduce the cost of a control tiédyeadding hardware to determine
the result of a conditional branch sooner (duriBbg:

e The branch target adder is moved .

11

CS 220 Assembly Language & Computer Architecture Fall 2010

e An equality checker is added that compares the values coouihgf the register file that can
quickly determine the result oflaeq (or bne).

Another technique that works well with short pipelines (sas our 5-stage pipeline) is the use of
abranch delay dlot.
e Here, wealways execute the instruction immediately following a branchump.

e This way, a programmer or (hopefully) a compiler can reoidstructions so that some
useful work can be done in the slot after the branch.

e This is not always possible, sc@p instruction may need to be inserted in some cases.
e However, it is a quite effective way to reduce the cost angueacy of control hazards. Real

implementations of MIPS (among other ISAs) make use of braletay slots.

Figure 4.64 shows some examples of how code can be reoraetadetadvantage of branch delay
slots.

We already discussed some branch prediction techniquestekhdiscusses some of them in a bit
more detail.

12

