Computer Science 220

Assembly Language & Comp. Architecture
SIENAcollege siena College

Computer Science Fall 2010

Topic Notes: Digital Logic

Our goal for the next couple of weeks is to gain a reasonabtypbete understanding of how we
can start with basic transistor technology and build upughoadded complexity and abstractions
to build all of the components we need to build a computenthidexecute machine code such as
that of the MIPS ISA. We will visit many of the topics most ofyybave seen previously, but will
go into more depth on some, and spend time implementing thiesats in the digital logic lab.

Basic Physics
At the lowest level, today’s computers are just very comglextrical circuits.

We will only look at the most basic ideas from physics to déschow some of the basic digital
logic building blocks can be constructed.

Resistors

In nature, electrical potential wants to equalize. To naimt potential, the electrons must be
separated by an insulating material. A conductive matevilhbllow the potential to equalize.

In an electrical circuit, we placerasistorto establish a potential difference between points.

In a circuit, the electrons want to go from a power supply tougid, but an appropriate resistor
prevents this from happening too quickly.

supply

electron flow

1

—— ground

VWV

CS 220 Assembly Language & Computer Architecture Fall 2010

Typically, the power supplies for our circuits will be +5V {blts).

If we place a wire that forms a path around our resistor, wes leaproblem: we make a toaster.
(recall your physicsV = IR)

supply

Toaster!

— ground

We want to avoid conducting all of our electricity like that be careful.

For this class, we’ll want to make sure we have a path from Igsujppground, but always with
resistance along the way. We won’t worry much about it beytbiadl

Transistors

Thetransistor, invented in 1948, is the key device that allows us to buitdkimds of logic circuits
that we will study.

___ supply
gate | sink
— source
_|l ground 1 1

gate poténtial >>(0 gate poténtial =0
O-resistance wire infinite—resistance

This is afield-effect transistor (FET)JFor physicists, this is @eontinuouslevice — a variable resistor,
maybe an amplifier.

For our Computer Science purposes, we only care about thisedebehavior at +5V or 0V (i.e.,
1 or O, true or false).

Realistically, 0-1V is a reasonable 0, 2-5V is a reasonabdnd,1-2V is illegal as it may cause
unpredictable behavior.

The behavior of the transistor follows these rules:

¢ If a potential (+5V, or 1, or true) is placed on thate , the transistor acts like a wire.

2

CS 220 Assembly Language & Computer Architecture Fall 2010

e If no potential is placed on thgate the transistor acts like a broken wire — one with infinite
resistance.

The transistor has some semiconducting material at theagatéhat causes a delay in the electron
flow. When we switch the gate from true to false or false to tituiakes some time to change its
behavior.

This gate delayis small, but keeps us from building faster computers. Weshawvait for the
electrons.

Modern computers will have 50-100 billion of these switchehich can be just a few atoms
across, allowing about 1 trillion “gate operations” percreat:

The Inverter

Consider this circuit:

+5V

output
gate ‘
(input) —

—+ gnd

The transistor part become$8 or oof? resistor, depending on the gatgput , so the potential
atoutput will be either OV or +5V, depending on the value of thput at the gate.

input =0 producesutput =1 (+5V) since theutput has no connection to ground
input =1 producesutput =0 (0V) since theoutput is connected (or “pulled”) to ground

This is aninverter

in | out
0| 1
110

amplified opposite

buffer
symbol

CS 220 Assembly Language & Computer Architecture Fall 2010

In the symbol, the triangle is for aamplified bufferand the circle on the tip means “opposite” or
“invert”.

The “buffer” just slows the signal down.

Since !'b=b, putting two inverters in series produces apwoiutqual to the input, but such a circuit
will build the strength of a signal and slow it down. Both canuseful, as we will see.

|EE |:?’E ' in | out

0| 0
1|1
Constructing NOR and NAND
Now consider this circuit:
+5V
output
I
(input) —_ (input) —_
— gnd — gnc

What does this circuit do? We have two transistors.

Which wires are connected or broken when we present valuasasfdb on the input? What
happens to the potential?

When eithem is 1 orb is 1, theoutput will be pulled to ground. If both are 0, there is no path
from output to ground.

= O
ol il e]
O Ok

This is an inverted OR — the NOR:iv (not OR)

What if we put our two transistors in series?

CS 220 Assembly Language & Computer Architecture Fall 2010

+5V

output

o
-

Now our output looks like this:

alb| 0
0|1
1|1

o Rk

This is an inverted AND — a NAND=A (not AND)

Abstractions of Physical Gates

Our lowest level of abstraction is to take our transistadubcircuits and abstract to these physical
digital logic gates:

NAND gate NOR gate

We know how to build them, but no longer need to think about Hoey work (except maybe on a
homework problem or an exam question).

We assume the existence of inverters, NAND, NOR gates andse¢hese to build other (more
complex) gates:

CS 220 Assembly Language & Computer Architecture Fall 2010

Universality of Certain Gates

We can use these five gates to construct a variety of circuits.

Two of these gates atemiversal NAND and NOR.

Any circuit that we can build with all 5 available can be bwith only NAND or only NOR gates.

For example, if we wire the same signal to both inputs of a NAND

This is an inverter!

If you have only NAND gates, you can build an AND gate:

We can do similar things to build NOR, OR from NAND.

We can also construct all other gates out of only NORs. Leftnasxa@rcise. (hint. DeMorgan’s
Laws)

Representing a Mathematical Function

We now wish to build a circuit to compute a given function:

CS 220 Assembly Language & Computer Architecture Fall 2010

input | f(input)
000 0

001
010
011
100
101
110
111

PP, OOOO

To construct a circuit for this, take a set of AND gates, onedach “1” in the function, stick
inverters (represented just by little circles on the inpatsthe inputs that are O.

Then hook up all the AND gate outputs to an OR gate, the ougatlel function.

For the above function:

110
E :

Logisim Circuit:
“jteresco/shared/cs220/examples/logisim/firstexample.circ
We can do this for any binary function!

For a function of am-bit value as amn-bit value, we can construet of these, and compute any
function we want (sqrt, sin, whatever).

We can almost always construct a simpler but equivalenuitivaith fewer gates than needed by
this approach.

Circuit simplification, in general, is a very hard problem.

How about a circuit to compute exclusive OR from the othertega

CS 220 Assembly Language & Computer Architecture Fall 2010

Moreover, what is the fewest number of gates needed?

We can do this with the technique we used previously, makglatable (note Gray code ordering):

a b out
0 0/ 0
0 1|1
1 1|0
1 0| 1

How about OR (kind of silly, yes, but we can do it):

o]
(e

out

kR OO
OrR RFrRO
Bk RO

CS 220 Assembly Language & Computer Architecture Fall 2010

Of course, this seems pretty wasteful. Even if we didn't juant to use an OR gate, we could
compute the opposite function and invert:

How about implementing NAND?

a b out
0 0| 1
0 1| 1
1 110
1 0| 1

Which goes directly to:

CS 220 Assembly Language & Computer Architecture Fall 2010

We can save some inverters by havingnda, b andb then only regular AND gates.
By doing this, we save two inverters. That's good.
Of course, if we wanted to simplify a circuit for NAND in reafid, we'd probably just use NAND...

The point: there are many cases where we will generate aitcalgorithmically and it won't
generate the simplest circuit.

Simplification of Circuits
We looked at how we could use AND, OR, and NOT gates to computéuauction ofn inputs.

We already saw one trick to simplify. If we use the inverse mfirgput more than once, we can
invert the signal once and connect the inverted signal tofalie places that want that input.

We can also notice quite easily that if our truth table forftinection being computed has more 1's
than 0’s, we might want to compute the inverse of the functiod invert the output at the end.

But there’s certainly more we can do.

Let’s consider this function:

10

CS 220 Assembly Language & Computer Architecture Fall 2010

P RPRPRPROOOOD
PR OORRFROOT
P ORPRORFROROlo
P ORRRREROO—

We could draw a circuit to do this, but it's going to be fairlgraplex. 5 3-way AND gates feeding
into a 5-way OR gate, and 3 inverters.

To consider how we can simplify this, let's write this irsam of product$orm:
f = abe + abc + abc + abe + abe

where “multiplication” represents an AND operation, anddaion” represents an OR operation.

But we can notice some things about this expression that Wellvaus to simplify it. Note that
between the termgbc andabc that if « = 0 andb = 1, it doesn’t matter what is, the result is
always 1. So we can effectively cancel out tho'se

f = ab + abc + abc + abe
Same thing when = 1 andb = 0. ¢ doesn’t matter. So we can simplify further:
f =ab+ ab+ abc

This leads to a simpler circuit.

But we can do even better with the subtle observation that wecoenbine the same term more
than once. Also note in our original expression that when1 andc = 1, b doesn’t matter. So we
can leave ouk from our last term and reduce the size of one of our AND gatésarcorresponding
circuit:

f=ab+ab+ac

Karnaugh Maps
A mechanism to perform these simplifications was proposd®%8 by Karnaugh.

We draw our truth table in an odd format:

11

CS 220 Assembly Language & Computer Architecture Fall 2010

AB

Note the odd ordering of the patterns for AB — gray code. Tlifger in only one bit.

Next, we look for pairs (or quads) of adjacent 1's in the magal @rcle them.

AB
C 00 01 11 10

0 m
@D

Each circle encompasses two (or 4 or more) outputs that caorbbined, since they differ only
in one bit.

We can then choose a subset of these circles that “coverf allral’s with circles (even if they're
just the one square), and we have a simplified sum-of-preduxgression that will lead to a simpler
circuit.

We can cover a 1 with more than one circle, but there’s no needver multiple times.

So in this case, we have several options. The simplest gption
ac+ ab + ac

or
ac + be + ac

just as we figured out before.
We can consider larger examples: a 4-input function thaldéa a 4x4 K-map.

Note that we can circle groups of 4, 8.

12

CS 220 Assembly Language & Computer Architecture

CD
AB 00 01 11 10
K—I_\

oo || 1 1

This one corresponds to

f=c+ab+ abd
CD

00
o4 D
01 u 1
11
ﬂﬂ F !

AB

This one corresponds to

= bd + dc + abed

In some cases, we don’t care about certain combinationgat.if-or example:

13

Fall 2010

CS 220 Assembly Language & Computer Architecture Fall 2010

P OPFRPOPFRPROFr OO
X POX OX PR R —

OFRPPFRPPPOOOOD
P RPOOPRFREFR,OOUT

The x entries indicate those input value that we don't care abdbey can be 0 or 1: whatever
makes our circuit simpler.

We can choose to cover (or not), the don't care entries in eorag.

The circling above corresponds to

Multiplexers and Demultiplexers

Suppose we have a shared telephone line — we want any one oftzenof incoming lines to be
connected to an output line.

We want this device:

14

CS 220 Assembly Language & Computer Architecture Fall 2010

g doo __|
o dol —] MUX
g dio | — phi(output)
di1l _ |
A0 Al
address
lines

A multiplexer— picks which of several inputs gets passed to a single olitpgut
If A=00, we wantd,, connected t@, others disconnected, etc.

In Logisim, the symbol looks like this:

Logisim Circuit: “jteresco/shared/cs220/examples/logisim/mux.circ

How can we implement this with the tools we have so far?

Let’s first think about how an AND gate can be used as a conawaté:

If the control is high (1), the input is passed on to the output
If the control is low (0), the input is irrelevant and a 0 is alyg placed on the output.

With this in mind, we can build a circuit for the multiplexer:

15

CS 220 Assembly Language & Computer Architecture Fall 2010

oo I I
w1 * |)
_
DO1
%1 !
»
D10 Q
w1 b
—
D11
w1
.Il!'l.]. :;.-"1 xlAD

Logisim Circuit: “jteresco/shared/cs220/examples/logisim/4tolmux.circ

Three of the four AND gates are guaranteed to produce 0 @h#d mask out theid input). One
will pass through itgl input to the output.

The opposite of this is theemultiplexer

— phiOC
— phiO1
data . pmux o
— philC
— phill
Al AO

Here, the address lines select which of several outputshgetalue from the input, while other
outputs get 0's.

And we can do it as such:

16

CS 220 Assembly Language & Computer Architecture Fall 2010

=) g
Dl
-I ! ._3 palo
! D—@Qll
Allx1 x1]A0

Logisim Circuit: “jteresco/shared/cs220/examples/logisim/1to4dmux.circ

Encoders and Decoders
A decoderselects one of several output lines based on a coded inmatlsig
Typically, we haven input and2™ output lines.

A 2-to-4 decoder:

P = OO0OY
OoOrrFr oo
o O O r o
O O PFr OlF
OFr OON
R O OO Ww

A circuit to do it:

17

CS 220 Assembly Language & Computer Architecture Fall 2010

Qo

Q1

Q2

Q3

SO0

o4 Eod

Al x 1 |AD

Logisim Circuit:
“jteresco/shared/cs220/examples/logisim/2to4decoder.circ

The opposite of this is thencoder where one of several input lines is high, and the output is a
code.

Typically, an encoder hax' input lines andh output lines.

A 4-to-2 encoder (assuming only legal inputs — where exautlyinput line is high):

S
w
S
)
S
—
IS
<)

PR oo
o r o

= O OO
OoOpr OO

oNel o)
oMol

This is a weird situation, as there are really 16 input coratiams, but only 4 are considered
“legal”. Assuming no illegal inputs, we can construct a aitc

18

CS 220 Assembly Language & Computer Architecture Fall 2010

Qo

Q1

) >—O
] >—o

*1| 1] [=1] |x1
A3 AZ Al AD

Logisim Circuit:
“jteresco/shared/cs220/examples/logisim/4to2encoder.circ

This is not especially satisfying. Our outputs don’t evepeted ong!

But these are still potentially useful. Consider a very hypotal situation where we have 16
buttons, exactly one of which must be pressed at any given(fp@rhaps this is a voting machine in
an election with 16 candidates). Each of these buttons, whewill turn on a light corresponding
to the button in another location.

One simple way to make this happen is to connect the 16 buttdhsl6 wires to 16 lights. But
with encoders and decoders, we can use fewer “long” wiresn€drthe output of the 16 buttons
to a 16-to-4 encoder. We essentially “encode” a value 0-1% &$it number and send that 4-bit
number over 4 wires. On the other end, we use a 4-t0-16 detmdecode the 4-bit value back to
0-15, exactly one of which will be high and light up one of oérlights.

Priority Encoders

More likely, we would want what is called@riority encoder where there is a priority of inputs,
making all combinations legal. We could give priority tohait low-numbered or high-numbered
inputs.

For low input priority, we’'d have this truth table:

19

CS 220 Assembly Language & Computer Architecture Fall 2010

Q
S
Q
=
Q
)
Q
w

PR RPOOOOOOOOCOOOOS
RPOORKRRRPROOOOOOOOS

OO0 O0OO0CO0OO0ORRRPRRRERRER
OCOORRPRPRFPOOOORRERER
ORrPRPOORRFRPROORRLROORR
PORPROROROROROROLR

Multi-input Gates, Fan Out

As our circuits have become more complex, we have seen mplii- gates. For AND, we can
draw any number of inputs symbolically, put a slash throinghimputs with a wire to specify large
numbers.

We draw these, but we might actually buy chips that providg 8rinput gates.
We can construct a 3-way AND from 2 2-way ANDS.
We can construct a 4-input and from 3 2-way ANDs:

Is this bad? Well, it's not natural, looks kind of like a logs our information cascades through
the gates.

A “tree-like” structure is better. At the least, there arédhgate delays before we have the answer.
Even so, we are stuck witlhh— 1 2-way gates to implement arrway gate.

In the 4-input case, the difference in gate delay isn’t sublgaleal, but think about the 64-input
AND. The linear approach leads to a circuit with 63 gate dglayhile the tree approach has only
6.

So when we're constructing arinput gate, we will have

e n — 1 gate equivalents charged to

1. transistor budget
2. real estate on the chip/board

e andO(logn) gate delay

20

CS 220 Assembly Language & Computer Architecture Fall 2010

Fan In and Fan Out
A wire in our circuit must be driven by +5V input, GND, or thetput of some gate.

Thisfan inis not a good idea.

This could be a short circuit — avoid it. It would be bad for yguade on a circuit design and bad
for the gates if you were to wire it up, as the gates might gej@as coming in the wrong way.

It is called awired or since if it does what we intend, it would behave like an OR gate

Fan outis allowed but is limited by the gate power.

The practical limit is 4 or 5 other gates powered by the outpat gate.
High gate loadwill mean weak signals.
A solution: bigger, stronger gates...but bigger, stromygees are slower (more gate delay).

Another solution: boost your signals as needed with a bufigrthis also introduces gate delay.

Adders

Our next goal is to develop circuits to do addition. Ultimgteve would like to be able to add 8-
or 16- or 32-bit 2's complement numbers together, but td,sta’ll try adding two bits together.

21

CS 220 Assembly Language & Computer Architecture Fall 2010

Half Adders

Recall this table from our discussion of binary arithmetic:

So if | have two one-bit valueg,andb, | can get their sum and the carry out with this circuit:

oo

R

Logisim Circuit:
“jteresco/shared/cs220/examples/logisim/halfadder.circ

This is called ahalf adder We represent it with this symbol:

ab
|

1/2

C S

This in itself isn't especially useful, but we’ll use thisasuilding block for what we really want...

Full Adders
Thefull adder.

22

CS 220 Assembly Language & Computer Architecture Fall 2010

Cout — + — Cin

S = a+b+Cin (zero bit)

This adds: andb, two one-bit values, plus a carry in, to produce a sumbhéind a carry out bit
Caut-
2 bits is enough to hold the sum, since the range of result8is O

We can construct this from two half adders:

Full Adder

a b
X

x1 1
I.I
L™

1/2

Cout r_l—xl Cin

1/2
Ks
5

Logisim Circuit: Circuit fulladder in
“jteresco/shared/cs220/examples/logisim/adders.circ

This in itself is still not especially useful, but these canused to build a multi-bit adder.

Ripple Carry Adder

For example, 4 of these can be chained together to constdibitadder.

23

CS 220 Assembly Language & Computer Architecture Fall 2010

a3 b3 a2 b2 al bl a0l bO

oy of of 7

D:rut % 1[Cin

éaéaéaéa

4-bit Ripple Carry Adder

Logisim Circuit: Circuit 4bitrcadder in
“jteresco/shared/cs220/examples/logisim/adders.circ

This is called aipple carry adder since the carry bits ripple along through the circuit.

Think about how the carry is propagated sequentially andidna&isivel down the chain. This is
slow!

For ann-bit ripple carry adder, we haw@(n) gates and this require3(n) gate delays to get the
right answer (for sure).

Think about how this works. It works for 2’s complement!

This has relatively poor performance because of the ripgbpeet of it, but it is actually used. We
just need to make sure we wait long enough before trustingrisevers.

We can extend this to any number of bits, but note that it i®agwe in both the number of gates
and in gate delay.

Subtractors

We could consider building a circuit to do subtraction, bethave these adders that can deal with
2's complement numbers. We can use this to build a subtractor

In fact, we can do this just by augmenting our 4-bit adder wiik extra input.

24

CS 220 Assembly Language & Computer Architecture Fall 2010

ai b3 a2z b2 al bl a0 b0
®1] 1] I=1) |=1] 1] |=1] |=x1] |x1

VAVA VA
I_I -_
':DL“:@—' 4-bit RC +

11
060

Logisim Circuit: Circuit 4bitaddsub in
“jteresco/shared/cs220/examples/logisim/adders.circ

The control lineC' is called the subtractdd line.
When(C'is 1, this computes — b, when it’s O, it computes + b.
Why does this work?

Recall that for 2's complement, we get -x from x by inverting thits and adding 1.

a—b=a+(-b)=a+b+1)=(a+b)+1
If C'is high, allb bits will be inverted by the XOR gates and the entire 4-biteatddcarry-in line
will be 1 (taking care of the second part).

Aside: note how XOR is a “not equals gate” and the control firekes them function as inverters
when it (C) is high.

We have built a general-purpose adder.

Speeding Up an Adder

Let's see what happens if we break aubit adder in half.

We can add Z-bit numbers (in parallel) and combine them into our answer.

We just have to think about what happens when the bottom ésifits in a carry out.

Consider this:

25

CS 220

Assembly Language & Computer Architecture

—a(n-1)

~—b(n-1)

—a(n/2)
 b(n/2)

adder

S(n-1)...S(n/2) (maybe)

A —~~

T 9N

£e £

© O © O
w2 L]

n2-bit |4

adder

S(n-1)...8(n/2) (maybe)

n/2

n/2 MUXs

n/2-bit | o Cout

—a(n/2-1)
— b(n/2-1)
— a0
b0

n2-bit |0

Tz

S(n-1)...S(n/2) (correct!)

We compute the bottorf) bits for sure and easily.

We compute both possibilities for the tgpbits, one with carry in, one without.

adder

= n/2

S(n/2-1)...S0

Fall 2010

Then, when the carry in arrives from the bottom half, we usetats + 1 MUXs and use the
carry out from the bottom half to select which input (the tas plus carry out) to pass through!

Some notes about this approach:

e We can make the low-order one a few bits smaller, so the cairysaalready delivered to

the MUXs when the high-order ones finish.

e This costs more space (bigger circuit) but saves time.

26

CS 220 Assembly Language & Computer Architecture Fall 2010

e We can do this recursively! But we don’t need to create the wit@e to do it. We only
need twice the space to do this.

¢ Difficulties: it’s hard to lay out on the chip (wires want tass).

e Realistically, standard ripple carry addition is used fduea of size 16 bits or less. It would
likely be broken down recursively for larger operand sizes.

27

