
Computer Science 220
Assembly Language & Comp. Architecture
Siena College
Fall 2010

Topic Notes: Digital Logic

Our goal for the next couple of weeks is to gain a reasonably complete understanding of how we
can start with basic transistor technology and build up through added complexity and abstractions
to build all of the components we need to build a computer thatwill execute machine code such as
that of the MIPS ISA. We will visit many of the topics most of you have seen previously, but will
go into more depth on some, and spend time implementing thesecircuits in the digital logic lab.

Basic Physics
At the lowest level, today’s computers are just very complexelectrical circuits.

We will only look at the most basic ideas from physics to describe how some of the basic digital
logic building blocks can be constructed.

Resistors

In nature, electrical potential wants to equalize. To maintain a potential, the electrons must be
separated by an insulating material. A conductive materialwill allow the potential to equalize.

In an electrical circuit, we place aresistorto establish a potential difference between points.

In a circuit, the electrons want to go from a power supply to ground, but an appropriate resistor
prevents this from happening too quickly.

electron flow

supply

ground



CS 220 Assembly Language & Computer Architecture Fall 2010

Typically, the power supplies for our circuits will be +5V (5volts).

If we place a wire that forms a path around our resistor, we have a problem: we make a toaster.
(recall your physics:V = IR)

Toaster!

supply

ground

We want to avoid conducting all of our electricity like that,so be careful.

For this class, we’ll want to make sure we have a path from supply to ground, but always with
resistance along the way. We won’t worry much about it beyondthat.

Transistors

Thetransistor, invented in 1948, is the key device that allows us to build the kinds of logic circuits
that we will study.

infinite−resistance

supply

gate sink
source

ground

gate potential >> 0
0−resistance wire

gate potential = 0

This is afield-effect transistor (FET). For physicists, this is acontinuousdevice – a variable resistor,
maybe an amplifier.

For our Computer Science purposes, we only care about this device’s behavior at +5V or 0V (i.e.,
1 or 0, true or false).

Realistically, 0-1V is a reasonable 0, 2-5V is a reasonable 1,and 1-2V is illegal as it may cause
unpredictable behavior.

The behavior of the transistor follows these rules:

• If a potential (+5V, or 1, or true) is placed on thegate , the transistor acts like a wire.

2



CS 220 Assembly Language & Computer Architecture Fall 2010

• If no potential is placed on thegate the transistor acts like a broken wire – one with infinite
resistance.

The transistor has some semiconducting material at the gateand that causes a delay in the electron
flow. When we switch the gate from true to false or false to true,it takes some time to change its
behavior.

This gate delayis small, but keeps us from building faster computers. We have to wait for the
electrons.

Modern computers will have 50-100 billion of these switches, which can be just a few atoms
across, allowing about 1 trillion “gate operations” per second.

The Inverter

Consider this circuit:

gnd

+5V

output
gate
(input)

The transistor part becomes a0Ω or ∞Ω resistor, depending on the gateinput , so the potential
atoutput will be either 0V or +5V, depending on the value of theinput at the gate.

input =0 producesoutput =1 (+5V) since theoutput has no connection to ground
input =1 producesoutput =0 (0V) since theoutput is connected (or “pulled”) to ground

This is aninverter!

in out
0 1
1 0

oppositeamplified 
buffer
symbol

3



CS 220 Assembly Language & Computer Architecture Fall 2010

In the symbol, the triangle is for anamplified bufferand the circle on the tip means “opposite” or
“invert”.

The “buffer” just slows the signal down.

Since !!b=b, putting two inverters in series produces an output equal to the input, but such a circuit
will build the strength of a signal and slow it down. Both can beuseful, as we will see.

in out
0 0
1 1

Constructing NOR and NAND
Now consider this circuit:

+5V

(input)

gnd

(input)

gnd

output

a b

What does this circuit do? We have two transistors.

Which wires are connected or broken when we present values ofa andb on the input? What
happens to the potential?

When eithera is 1 orb is 1, theoutput will be pulled to ground. If both are 0, there is no path
from output to ground.

a/b 0 1
0 1 0
1 0 0

This is an inverted OR – the NOR:¬∨ (not OR)

What if we put our two transistors in series?

4



CS 220 Assembly Language & Computer Architecture Fall 2010

gnd

+5V

output

a

b

Now our output looks like this:

a/b 0 1
0 1 1
1 1 0

This is an inverted AND – a NAND:¬∧ (not AND)

Abstractions of Physical Gates
Our lowest level of abstraction is to take our transistor-based circuits and abstract to these physical
digital logic gates:

NAND gate NOR gate

We know how to build them, but no longer need to think about howthey work (except maybe on a
homework problem or an exam question).

We assume the existence of inverters, NAND, NOR gates and we use these to build other (more
complex) gates:

5



CS 220 Assembly Language & Computer Architecture Fall 2010

AND gate OR gate

Universality of Certain Gates
We can use these five gates to construct a variety of circuits.

Two of these gates areuniversal: NAND and NOR.

Any circuit that we can build with all 5 available can be builtwith only NAND or only NOR gates.

For example, if we wire the same signal to both inputs of a NAND:

This is an inverter!

If you have only NAND gates, you can build an AND gate:

We can do similar things to build NOR, OR from NAND.

We can also construct all other gates out of only NORs. Left as an exercise. (hint: DeMorgan’s
Laws)

Representing a Mathematical Function
We now wish to build a circuit to compute a given function:

6



CS 220 Assembly Language & Computer Architecture Fall 2010

input f(input)
000 0
001 0
010 0
011 0
100 0
101 1
110 1
111 1

To construct a circuit for this, take a set of AND gates, one for each “1” in the function, stick
inverters (represented just by little circles on the inputs) on the inputs that are 0.

Then hook up all the AND gate outputs to an OR gate, the output is the function.

For the above function:

Logisim Circuit:
˜jteresco/shared/cs220/examples/logisim/firstexample.circ

We can do this for any binary function!

For a function of ann-bit value as anm-bit value, we can constructm of these, and compute any
function we want (sqrt, sin, whatever).

We can almost always construct a simpler but equivalent circuit with fewer gates than needed by
this approach.

Circuit simplification, in general, is a very hard problem.

How about a circuit to compute exclusive OR from the other 5 gates?

7



CS 220 Assembly Language & Computer Architecture Fall 2010

Moreover, what is the fewest number of gates needed?

We can do this with the technique we used previously, make a truth table (note Gray code ordering):

a b out
0 0 0
0 1 1
1 1 0
1 0 1

How about OR (kind of silly, yes, but we can do it):

a b out
0 0 0
0 1 1
1 1 1
1 0 1

8



CS 220 Assembly Language & Computer Architecture Fall 2010

Of course, this seems pretty wasteful. Even if we didn’t justwant to use an OR gate, we could
compute the opposite function and invert:

How about implementing NAND?

a b out
0 0 1
0 1 1
1 1 0
1 0 1

Which goes directly to:

9



CS 220 Assembly Language & Computer Architecture Fall 2010

We can save some inverters by havinga anda, b andb then only regular AND gates.

By doing this, we save two inverters. That’s good.

Of course, if we wanted to simplify a circuit for NAND in real life, we’d probably just use NAND...

The point: there are many cases where we will generate a circuit algorithmically and it won’t
generate the simplest circuit.

Simplification of Circuits
We looked at how we could use AND, OR, and NOT gates to compute any function ofn inputs.

We already saw one trick to simplify. If we use the inverse of an input more than once, we can
invert the signal once and connect the inverted signal to allof the places that want that input.

We can also notice quite easily that if our truth table for thefunction being computed has more 1’s
than 0’s, we might want to compute the inverse of the functionand invert the output at the end.

But there’s certainly more we can do.

Let’s consider this function:

10



CS 220 Assembly Language & Computer Architecture Fall 2010

a b c f
0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 0
1 1 1 1

We could draw a circuit to do this, but it’s going to be fairly complex. 5 3-way AND gates feeding
into a 5-way OR gate, and 3 inverters.

To consider how we can simplify this, let’s write this in asum of productsform:

f = abc + abc + abc + abc + abc

where “multiplication” represents an AND operation, and “addition” represents an OR operation.

But we can notice some things about this expression that will allow us to simplify it. Note that
between the termsabc andabc that if a = 0 andb = 1, it doesn’t matter whatc is, the result is
always 1. So we can effectively cancel out thosec’s:

f = ab + abc + abc + abc

Same thing whena = 1 andb = 0. c doesn’t matter. So we can simplify further:

f = ab + ab + abc

This leads to a simpler circuit.

But we can do even better with the subtle observation that we can combine the same term more
than once. Also note in our original expression that whena = 1 andc = 1, b doesn’t matter. So we
can leave outb from our last term and reduce the size of one of our AND gates inthe corresponding
circuit:

f = ab + ab + ac

Karnaugh Maps

A mechanism to perform these simplifications was proposed in1953 by Karnaugh.

We draw our truth table in an odd format:

11



CS 220 Assembly Language & Computer Architecture Fall 2010

1

AB

C 00 01 11 10

0

1

1 1

11

Note the odd ordering of the patterns for AB – gray code. Thesediffer in only one bit.

Next, we look for pairs (or quads) of adjacent 1’s in the map, and circle them.

AB

C 00 01 11 10

0

1

1 1

111

Each circle encompasses two (or 4 or more) outputs that can becombined, since they differ only
in one bit.

We can then choose a subset of these circles that “cover” all of our 1’s with circles (even if they’re
just the one square), and we have a simplified sum-of-products expression that will lead to a simpler
circuit.

We can cover a 1 with more than one circle, but there’s no need to cover multiple times.

So in this case, we have several options. The simplest options:

ac + ab + ac

or

ac + bc + ac

just as we figured out before.

We can consider larger examples: a 4-input function that leads to a 4x4 K-map.

Note that we can circle groups of 4, 8.

12



CS 220 Assembly Language & Computer Architecture Fall 2010

CD

00 01 11 10

00

01

AB

11

10

1 1

1 1 1

1

1

1

1 1

1

This one corresponds to

f = c + ab + abd

CD

00 01 11 10

00

01

AB

11

10

1

11

1

1 1

1

1

This one corresponds to

f = bd + ac + abcd

In some cases, we don’t care about certain combinations of input. For example:

13



CS 220 Assembly Language & Computer Architecture Fall 2010

a b c f
0 0 0 1
0 0 1 1
0 1 0 x
0 1 1 0
1 0 0 x
1 0 1 0
1 1 0 1
1 1 1 x
c

The x entries indicate those input value that we don’t care about.They can be 0 or 1: whatever
makes our circuit simpler.

BC

A 00 01 11 10

0

1 1x

1

x

1 x

We can choose to cover (or not), the don’t care entries in our K-map.

The circling above corresponds to

f = ab + c

Multiplexers and Demultiplexers
Suppose we have a shared telephone line – we want any one of a number of incoming lines to be
connected to an output line.

We want this device:

14



CS 220 Assembly Language & Computer Architecture Fall 2010

phi(output)MUX

d00

d01

d10

d11

A0 A1
address

lines
da

ta
 li

ne
s

A multiplexer– picks which of several inputs gets passed to a single outputline.

If A=00, we wantd00 connected toφ, others disconnected, etc.

In Logisim, the symbol looks like this:

Logisim Circuit: ˜jteresco/shared/cs220/examples/logisim/mux.circ

How can we implement this with the tools we have so far?

Let’s first think about how an AND gate can be used as a control device:

If the control is high (1), the input is passed on to the output.

If the control is low (0), the input is irrelevant and a 0 is always placed on the output.

With this in mind, we can build a circuit for the multiplexer:

15



CS 220 Assembly Language & Computer Architecture Fall 2010

Logisim Circuit: ˜jteresco/shared/cs220/examples/logisim/4to1mux.circ

Three of the four AND gates are guaranteed to produce 0 (that is, to mask out theird input). One
will pass through itsd input to the output.

The opposite of this is thedemultiplexer

phi00

DMUXdata

A1 A0

phi01

phi10

phi11

Here, the address lines select which of several outputs get the value from the input, while other
outputs get 0’s.

And we can do it as such:

16



CS 220 Assembly Language & Computer Architecture Fall 2010

Logisim Circuit: ˜jteresco/shared/cs220/examples/logisim/1to4dmux.circ

Encoders and Decoders
A decoderselects one of several output lines based on a coded input signal.

Typically, we haven input and2n output lines.

A 2-to-4 decoder:

a b 0 1 2 3
0 0 1 0 0 0
0 1 0 1 0 0
1 1 0 0 1 0
1 0 0 0 0 1

A circuit to do it:

17



CS 220 Assembly Language & Computer Architecture Fall 2010

Logisim Circuit:
˜jteresco/shared/cs220/examples/logisim/2to4decoder.circ

The opposite of this is theencoder, where one of several input lines is high, and the output is a
code.

Typically, an encoder has2n input lines andn output lines.

A 4-to-2 encoder (assuming only legal inputs – where exactlyone input line is high):

a3 a2 a1 a0 φ1 φ0

0 0 0 1 0 0
0 0 1 0 0 1
0 1 0 0 1 0
1 0 0 0 1 1

This is a weird situation, as there are really 16 input combinations, but only 4 are considered
“legal”. Assuming no illegal inputs, we can construct a circuit:

18



CS 220 Assembly Language & Computer Architecture Fall 2010

Logisim Circuit:
˜jteresco/shared/cs220/examples/logisim/4to2encoder.circ

This is not especially satisfying. Our outputs don’t even depend ona0!

But these are still potentially useful. Consider a very hypothetical situation where we have 16
buttons, exactly one of which must be pressed at any given time (perhaps this is a voting machine in
an election with 16 candidates). Each of these buttons, whenon, will turn on a light corresponding
to the button in another location.

One simple way to make this happen is to connect the 16 buttonswith 16 wires to 16 lights. But
with encoders and decoders, we can use fewer “long” wires. Connect the output of the 16 buttons
to a 16-to-4 encoder. We essentially “encode” a value 0-15 asa 4-bit number and send that 4-bit
number over 4 wires. On the other end, we use a 4-to-16 decoderto decode the 4-bit value back to
0-15, exactly one of which will be high and light up one of our 16 lights.

Priority Encoders

More likely, we would want what is called apriority encoder, where there is a priority of inputs,
making all combinations legal. We could give priority to either low-numbered or high-numbered
inputs.

For low input priority, we’d have this truth table:

19



CS 220 Assembly Language & Computer Architecture Fall 2010

a0 a1 a2 a3 φ0 φ1

1 1 1 1 0 0
1 1 1 0 0 0
1 1 0 1 0 0
1 1 0 0 0 0
1 0 1 1 0 0
1 0 1 0 0 0
1 0 0 1 0 0
1 0 0 0 0 0
0 1 1 1 0 1
0 1 1 0 0 1
0 1 0 1 0 1
0 1 0 0 0 1
0 0 1 1 1 0
0 0 1 0 1 0
0 0 0 1 1 1

Multi-input Gates, Fan Out
As our circuits have become more complex, we have seen multi-input gates. For AND, we can
draw any number of inputs symbolically, put a slash through the inputs with a wire to specify large
numbers.

We draw these, but we might actually buy chips that provide only 2-input gates.

We can construct a 3-way AND from 2 2-way ANDS.

We can construct a 4-input and from 3 2-way ANDs:

Is this bad? Well, it’s not natural, looks kind of like a loop,as our information cascades through
the gates.

A “tree-like” structure is better. At the least, there are only 2 gate delays before we have the answer.

Even so, we are stuck withn − 1 2-way gates to implement ann-way gate.

In the 4-input case, the difference in gate delay isn’t such abig deal, but think about the 64-input
AND. The linear approach leads to a circuit with 63 gate delays, while the tree approach has only
6.

So when we’re constructing ann-input gate, we will have

• n − 1 gate equivalents charged to

1. transistor budget

2. real estate on the chip/board

• andO(log n) gate delay

20



CS 220 Assembly Language & Computer Architecture Fall 2010

Fan In and Fan Out

A wire in our circuit must be driven by +5V input, GND, or the output of some gate.

This fan in is not a good idea.

This could be a short circuit – avoid it. It would be bad for your grade on a circuit design and bad
for the gates if you were to wire it up, as the gates might get a signal coming in the wrong way.

It is called awired or since if it does what we intend, it would behave like an OR gate.

Fan outis allowed but is limited by the gate power.

The practical limit is 4 or 5 other gates powered by the outputof a gate.

High gate loadwill mean weak signals.

A solution: bigger, stronger gates...but bigger, strongergates are slower (more gate delay).

Another solution: boost your signals as needed with a buffer, but this also introduces gate delay.

Adders
Our next goal is to develop circuits to do addition. Ultimately, we would like to be able to add 8-
or 16- or 32-bit 2’s complement numbers together, but to start, we’ll try adding two bits together.

21



CS 220 Assembly Language & Computer Architecture Fall 2010

Half Adders

Recall this table from our discussion of binary arithmetic:

+ 0 1
0 00 01
1 01 10

So if I have two one-bit values,a andb, I can get their sum and the carry out with this circuit:

Logisim Circuit:
˜jteresco/shared/cs220/examples/logisim/halfadder.circ

This is called ahalf adder. We represent it with this symbol:

S

1/2

a b

C

This in itself isn’t especially useful, but we’ll use this asa building block for what we really want...

Full Adders

Thefull adder:

22



CS 220 Assembly Language & Computer Architecture Fall 2010

Cout

a b

+

S = a+b+Cin (zero bit)

Cin

This addsa andb, two one-bit values, plus a carry in, to produce a sum bitS and a carry out bit
Cout.

2 bits is enough to hold the sum, since the range of results is 0-3.

We can construct this from two half adders:

Logisim Circuit: Circuit fulladder in
˜jteresco/shared/cs220/examples/logisim/adders.circ

This in itself is still not especially useful, but these can be used to build a multi-bit adder.

Ripple Carry Adder

For example, 4 of these can be chained together to construct a4-bit adder.

23



CS 220 Assembly Language & Computer Architecture Fall 2010

Logisim Circuit: Circuit 4bitrcadder in
˜jteresco/shared/cs220/examples/logisim/adders.circ

This is called aripple carry adder, since the carry bits ripple along through the circuit.

Think about how the carry is propagated sequentially and hasto travel down the chain. This is
slow!

For ann-bit ripple carry adder, we haveO(n) gates and this requiresO(n) gate delays to get the
right answer (for sure).

Think about how this works. It works for 2’s complement!

This has relatively poor performance because of the ripple aspect of it, but it is actually used. We
just need to make sure we wait long enough before trusting theanswers.

We can extend this to any number of bits, but note that it is expensive in both the number of gates
and in gate delay.

Subtractors

We could consider building a circuit to do subtraction, but we have these adders that can deal with
2’s complement numbers. We can use this to build a subtractor.

In fact, we can do this just by augmenting our 4-bit adder withone extra input.

24



CS 220 Assembly Language & Computer Architecture Fall 2010

Logisim Circuit: Circuit 4bitaddsub in
˜jteresco/shared/cs220/examples/logisim/adders.circ

The control lineC is called the subtract/add line.

WhenC is 1, this computesa − b, when it’s 0, it computesa + b.

Why does this work?

Recall that for 2’s complement, we get -x from x by inverting the bits and adding 1.

a − b ≡ a + (−b) ≡ a + (b + 1) ≡ (a + b) + 1

If C is high, allb bits will be inverted by the XOR gates and the entire 4-bit adder’s carry-in line
will be 1 (taking care of the second part).

Aside: note how XOR is a “not equals gate” and the control linemakes them function as inverters
when it (C) is high.

We have built a general-purpose adder.

Speeding Up an Adder

Let’s see what happens if we break ourn-bit adder in half.

We can add 2n
2
-bit numbers (in parallel) and combine them into our answer.

We just have to think about what happens when the bottom half results in a carry out.

Consider this:

25



CS 220 Assembly Language & Computer Architecture Fall 2010

S(n−1)...S(n/2) (correct!)

n/2−bit
adder

...

n/2−bit
adder

...

n/2−bit
adder

...

a(
n−

1)
b(

n−
1)

b(
n/

2)
a(

n/
2)

b(
n−

1)
a(

n−
1)

a(
n/

2)
b(

n/
2)

a(
n/

2−
1)

b(
n/

2−
1)

b0a0

0

1

n/2 MUXs

n/2

Cout 0

S(n/2−1)...S0S(n−1)...S(n/2) (maybe)

S(n−1)...S(n/2) (maybe)

n/2

n/2

n/2

We compute the bottomn
2

bits for sure and easily.

We compute both possibilities for the topn

2
bits, one with carry in, one without.

Then, when the carry in arrives from the bottom half, we use a set of n

2
+ 1 MUXs and use the

carry out from the bottom half to select which input (the top bits plus carry out) to pass through!

Some notes about this approach:

• We can make the low-order one a few bits smaller, so the carry out is already delivered to
the MUXs when the high-order ones finish.

• This costs more space (bigger circuit) but saves time.

26



CS 220 Assembly Language & Computer Architecture Fall 2010

• We can do this recursively! But we don’t need to create the whole tree to do it. We only
need twice the space to do this.

• Difficulties: it’s hard to lay out on the chip (wires want to cross).

• Realistically, standard ripple carry addition is used for values of size 16 bits or less. It would
likely be broken down recursively for larger operand sizes.

27


