
Computer Science 220
Assembly Language & Comp. Architecture
Siena College
Fall 2010

Topic Notes: Bits and Bytes and Numbers

Binary Basics
At least some of this will be review, but we will go over it for completeness.

Question: how high can you count on one finger?

That finger can either be up or down, so you can count 0, 1 and that’s it.

(Computer scientists always start counting at 0, so you should get used to that...if you aren’t al-
ready.)

So then... How high can you count on one hand/five fingers?

When kids count on their fingers, they can get up to 5. The numberis represented by the number
of fingers they have up.

But we have multiple ways to represent some of the numbers thisway: 1 0, 5 1’s, 10 2’s, 10 3’s, 5
4’s and 1 5.

We can do better. We have 32 different combinations of fingersup or down, so we can use them to
represent 32 different numbers.

Given that, how high can you count on ten fingers?

To make this work, we need to figure out which patterns of fingers up and down correspond to
which numbers.

To keep things manageable, we’ll assume we’re working with 4digits (hey, aren’t fingers called
digits too?) each of which can be a 0 or a 1. We should be able to represent 16 numbers. As
computer scientists, we’ll represent numbers from 0 to 15.

Our 16 patterns are base 2, orbinary, numbers. In this case, we call the digitsbits (short forbinary
digits).

Each bit may be 0 or 1. That’s all we have.

Just like in base 10 (ordecimal), where we have the 1’s (100) place, the 10’s (101) place, the 100’s
(102) place, etc, here we have the 1’s (20), 2’s (21), 4’s (22), 8’s (23), etc.

As you might imagine, binary representations require a lot of bits as we start to represent larger
values. Since we will often find it convenient to think of our binary values in 4-bit chunks, we will
also tend to use base 16 (orhexadecimal).

Since we don’t have enough numbers to represent the 16 uniquedigits required, we use the numbers
0–9 for the values 0–9 but then the letters A–F to represent the values 10–15.

CS 220 Assembly Language & Computer Architecture Fall 2010

0 0000
1 0001
2 0010
3 0011
4 0100
5 0101
6 0110
7 0111
8 1000
9 1001

10 1010 A
11 1011 B
12 1100 C
13 1101 D
14 1110 E
15 1111 F

Any number can be used as the base, but the common ones we’ll use are base 2, base 8 (octal, 3
binary digits), base 10, and base 16.

Since we will do so much work in binary, you will come to learn the powers of 2 and sums of
common powers of 2.

1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768, 65536.

Numbers like 49152 are common also (16384+32768).

Also, you’ll get to know the numbers2n
− 1. Why?

Number representations
Some terminology, most of which you’ve likely seen before.

1. bit – 0≡ False, 1≡ True

2. byte(alsooctet) – term coined in 1956

Seehttp://www.google.com/search?hl=en&q=byte+1956

A byte is often expressed as 2 hex digits, start with dollar sign or “0x” to make it clear that
it’s hex and not decimal:
$FE16 = 0xFE = 254 = 1111 11102

3. nibble/nybble(alsosemioctet) – 4 bits – “half a byte”

4. word – the number of bits depends on the architecture, but we mightthink of it as “the
amount that a machine can handle with ease”.

16 bits or 32 bit for most of our purposes.

2

CS 220 Assembly Language & Computer Architecture Fall 2010

Note: a 16-bit word may be referred to as ashort .

5. int

This is a C-language concept more than a machine concept.

The number of bits in anint can vary but usually is 4 bytes/32 bits.

6. long or “longword” – this almost always is 32 bits

We have232 = 4.3 billion possible values.

You’ve heard of “32-bit” machines, like the Intel x86. This means they operate primarily on
32-bit values. More on what this all means later.

7. long long – 64 bits, a.k.a. “quadword”

264 values.1.84 × 1019

8. VAX 128-bit value: “octaword”

2128 values.3.40 × 1038

9. bit and byte significance

When placing the bits within a byte, they are almost always arranged with themost signifi-
cant bit (msb) on the left,least significant bit(lsb) on the right.

Same idea for bytes making up words, longwords, etc.

0 1 1 0 1 0 1 0 0 0 0 0 1 1 0 0

MSB LSB

10. endianness– what order do we store these in, in memory

As long we we’re consistent, it doesn’t really matter which way it is set up. No significant
advantages or disadvantages.

(a) little endian(x86)

high memory

.

.

.
LSB
MSB

.

.

.

low memory

(b) big endian(Sun Sparc, 68K, PPC, IP “network byte order”)

high memory

.

.

.
MSB
LSB

.

.

.

low memory

3

CS 220 Assembly Language & Computer Architecture Fall 2010

An architecture can use either ordering internally, so longas it is consistent. However,
endianness becomes important when we think about exchanging data among machines (net-
works). Network byte ordering(big endian) is required of networked data for consistency
when exchanging data among machines that may use different internal representations.

The main architecture we’ll be using, MIPS, is bi-endian. Itcan process data with either big
or little endianness.

See Example:
˜jteresco/shared/cs220/examples/show bytes

Character representations
Computers only deal with numbers. Humans sometimes deal withletters. So we just need agree
on how to encode letters as numbers.

1. ASCII (1963) – American Standard Code for Information Interchange

(a) fits in a byte

(b) some you’ll want to know:
space (32 = 0x20)
numbers (’0’-’9’ = 48-57 = 0x30-0x39)
lowercase letters (’a’-’z’ = 97-122 = 0x61-0x7a), 96+letter pos
uppercase letters (’A’-’Z’ = 65-90 = 0x41-0x5a), 64+letterpos

(c) See:man ascii

2. Of historical interest: EBCDIC (Extended Binary Coded Decimal Interchange Code) devel-
oped by IBM for punched cards in the early 1960s and IBM still uses it on mainframes today,
as do some banking systems in some circumstances.

3. Unicode (1991), ASCII superset (for our purposes) – 2-bytecharacters to support interna-
tional character sets

Memory model and pointers
We’ve talked about these bits and bytes and words, let’s lookat how these are organized in a
computer’s memory.

Aside: how much memory does your computer have? Your first computer? Your phone?

My first computer’s memory was measured in kilobytes, lower-end computers might still be mea-
sured in megabytes, most current computers are measured in gigabytes, modern supercomputers
can have terabytes.

Exponents:

4

CS 220 Assembly Language & Computer Architecture Fall 2010

1. K(ilo) = 210 (2.4% more than103)

2. M(ega) =220

3. G(iga) =230

4. T(era) =240

5. P(eta) =250

6. E(xa) =260

7. Z(etta) =270

8. Y(otta) =280 (21% more than1024)

Rule of thumb: every103 = 1000 is approximately210 (log2 10 ≈ 3).

Aside from aside: When you buy a hard drive, it’s probably measuring gigabytes as billions of
bytes not230 of bytes.

We will consider a simplistic but reasonably accurate view of a computer’s memory: just think of
it as a big table of locations.

The value ofn determines how much memory you can have. Old systems: n=16 orn=24, many
modern systems: n=32, new systems: n=64 and these are becoming more common.

Think of this like a giant array of bytes.

We number these memory locations from 0 to2n
− 1, and we can refer to them by this number.

When we store a memory location in memory, we are storing apointer.

The number of bits in a pointer determines how much memory canbe addressed.

A pointer is just a binary value. If I have the value0x10DE, I can think of that as referring to
memory location$10DE.

Many modern systems let you access any byte, but this is not a requirement. Theaddressable unit
may be a word or a longword.

In these systems, we can address a larger memory in the same number of bits in the pointer size,
but we cannot (directly) access each individual byte.

Even on a byte-addressable system, if we are treating a chunkof bytes as a word or longword, they
may need to bealignedon 2-byte or 4-byte boundaries.

Unsigned Math
We next consider how to do arithmetic on binary numbers.

We begin withunsignedaddition, where all of the values are nonnegative integers,and we work
with 4-bit numbers for simplicity.

5

CS 220 Assembly Language & Computer Architecture Fall 2010

This works just like addition of base-10 numbers, if you can recall that procedure.

0101 0101 1111
+0011 +0111 +1110
----- ----- -----

1000 1100 11101

The first couple were straightforward, but then we encountera problem... The answer sometimes
doesn’t fit! There’s no place for that extra bit, so we’ve justadded 15 and 14 and gotten 13 as our
answer!

This is called anoverflowcondition and the extra bit in the 16’s place is called acarry out.

Unsigned multiplication

Again, sometimes the answer will fit, sometimes it won’t. But the chances of a problem are much
greater.

11 111
x100 x 11
---- ----

00 111
00 111

11 ----
---- 10101
1100

Again, we have some overflow.

In many systems, the result of a multiplication of twon-bit numbers will be stored in a2n-bit
number to avoid overflow.

Signed Math
So far, we’ve ignored the possibility of negative numbers.

How can we represent a signed integer?

• Signed Magnitude

The simplest way is to take one of our bits and say it’s a sign: a0 means positive, and a 1
means negative.

With n bits, we can now represent numbers from−(2n−1
− 1) to (2n−1

− 1)

Positive numbers just use the unsigned representation.

6

CS 220 Assembly Language & Computer Architecture Fall 2010

Negative numbers use a 1 in thesign bit then store the magnitude of the value in the rest.

Typically the sign bit is the highest-order bit.

bit

1 −x

x0positive

negative

magnitude
sign

This idea is very straightforward, and makes some sense in practice:

– You want to negate a value, you just switch its sign bit.

– You want to see if a value is negative, just look at the one bit

Potential concern: two zeroes! +0 and -0 are distinct values.

Another property of signed binary representations that we will want to consider is how how
the signed values fall, as a function of their unsigned representations.

−0

signed
value

unsigned value of representation

So we do have a disadvantage: a direct comparison of two values differs between signed
and unsigned values with the same representation. In fact, all negative numbers look to be
“bigger than” all positive numbers. Plus, the ordering of negatives is reverse of the ordering
of positives. This might complicate hardware that would need to deal with these values.

• Excess N

Here, a value x is represented by the non-negative value x+N.

With 4-bit numbers, it would make sense to use Excess 8, so we have about the same number
of negative and positive representable values.

1000 = 0 (0 is not the all 0’s pattern!)
0111 = -1
0000 = -8
1111 = 7

7

CS 220 Assembly Language & Computer Architecture Fall 2010

So we can represent a range of values is -8 to 7.

We eliminated the -0 problem, plus a direct comparison worksthe same as it would for
unsigned representations.

+Nsigned
value

unsigned value of representation

−N

Excess N representations are used in some circumstances, but are fairly rare.

• 1’s complement

For non-negativex, we just use the unsigned representation ofx.

For negativex, use thebit-wise complement(flip each bit) of−x.

C programming tip: the∼ operator will do a bitwise complement.

Examples:

0 = 0000

-1 = 0001 = 1110

-0 = 0000 = 1111

-7 = 0111 = 1000

Issues:

– we have a -0

– we can compare within a sign, but otherwise need to check sign

8

CS 220 Assembly Language & Computer Architecture Fall 2010

−0

signed
value

unsigned value of representation

Range: -7 to +7.

Like Excess N, 1’s complement is used in practice, but only inspecific situations.

• 2’s complement

For non-negative x, use the unsigned representation of x.

For negative x, use the complement of -x, then add 1 (that seems weird..).

0 = 0000

-0 = 0000+1 = 1111+1 = 0000

Now, that’s useful. 0 and -0 have the same representation, sothere’s really no -0.

1 = 0001

-1 = 0001+1 = 1110+1 = 1111

Also, very useful. We can quickly recognize -1 as it’s the value with all 1 bits.

Another useful feature: 1’s bit still determines odd/even (not true with 1’s complement)

−0

signed
value

unsigned value of representation

Like 1’s complement, we can compare numbers with the same sign directly, otherwise have
to check sign.

9

CS 220 Assembly Language & Computer Architecture Fall 2010

Given these convenient properties, 2’s complement representations are the standard and de-
fault unless there’s some specific situation that calls for another representation.

Note: Fortran had an if statement:

IF (I) GOTO 10,20,30

which translated to if I is negative, goto 10, if 0, goto 20, ifpositive, goto 30.

It is easy to check these cases with 2’s complement.

Here are all of the 4-bit 2’s Complement numbers, which will become very familiar.

0000 = 0 1000 = -8
0001 = 1 1001 = -7
0010 = 2 1010 = -6
0011 = 3 1011 = -5
0100 = 4 1100 = -4
0101 = 5 1101 = -3
0110 = 6 1110 = -2
0111 = 7 1111 = -1

Notice that the negation operation works both ways: if you take the 2’s complement of a number
then take the 2’s complement again, you get the original number back.

Signed addition

How does signed addition work with 2’s complement?

3 0011 -3 1101 4 0100 -4 1100 4 0100
+4 0100 -4 1100 4 0100 -5 1011 5 0101

--------- ---------- ---------- ----------- ----------
7 (0)0111 -7 (1)1001 8? (0)1000 -9? (1)0111 9? (0)1001

OK OK -8 ! +7 ! -7 !

Things are fine with 3+4. This makes sense since we are adding two positive numbers and get as a
result a positive number that can be represented in 4-bit 2’scomplement.

However, this will not be the case all the time. Some terminology to get us ready.

• A carry out is when the carry bit we generate at the highest-order addition is a 1. It doesn’t
fit anywhere – we can’t add it into the next place since there isno next place.

• An overflowis the condition where the answer is incorrect.

10

CS 220 Assembly Language & Computer Architecture Fall 2010

• With unsigned addition, it’s easy. We have a carry out if and only if we have overflow.

• With signed addition, the situation is more complicated:

– (-3)+(-4) produces a carry out but no overflow (and -7 is the right answer).

– 4+4 and 4+5 do not produce a carry out, but produce overflow (-8and -7 are the wrong
answers)

– (-4)+(-5) produces a carry out and overflow

So how can we tell if we had a true overflow? If the carry in and carry out of the most significant
bit are different, we have a overflow.

When developing a circuit to perform 2’s complement addition, this is the rule we will use to detect
overflow.

But note this excellent feature: other than the overflow detection, addition in 2’s complement is
same as unsigned addition, so if we have a circuit that adds unsigned numbers, it works for 2’s
complement also (once overflow detection is added)!

How can we do subtraction? Simple: negate the subtrahend andadd.

What about signed addition for 1’s complement?

1 0001 -4 1011 -0 1111
+4 0100 +4 0100 +1 0001

--------- -------- --------
5 0101 -0 1111 10000

2’s Complement Multiplication

Can we use the same approach we used for unsigned?

-1 1111
x3 0011

1111
1111

101101

If we take the low 4 bits, we have -3, as we should.

But if we’re mutliplying 2 4-bit numbers and expecting an 8-bit result (reasonable thing to do), we
don’t have the right answer. 00101101=45.

We need to “sign extend” the numbers we’re multiplying to 8 bits first:

11

CS 220 Assembly Language & Computer Architecture Fall 2010

-1 11111111
x3 00000011

11111111
11111111

1011111101

Now, we truncate off the bits that didn’t fit and we have -3.

Note that we will throw away all places that don’t fit in our 8-bit result, so why compute them?

How about when we have a product that doesn’t fit in 4 bits?

4 00000100
x-6 11111010

0
100

100
100

100
100

100

11101000 = -24 (good)

Or two negatives that won’t fit?

-5 11111011
x-3 11111101

11111011
11111011

11111011
11111011

11111011
11111011

11111011

00001111 = 15 (good)

Division? Sure, we can do it, but we won’t here.

12

CS 220 Assembly Language & Computer Architecture Fall 2010

Logical operations
Our next topic on bits and numbers deals with logical operations on data.

Typically, we think of 1 as “true”, 0 as “false” but in many circumstances, any non-zero value may
be considered “true”.

C and other high-level languages have logical operators that return 0/1 values:

(==, ! , != , &&, ||)

You’ve used these in your Java or other high-level language programming, and should have a solid
handle on them.

Side note: recall the idea ofshort-circuit evaluation. When do we know the result of

if (a && b && c && d)

or

if (a || b || c || d)

Well, for the logical AND, we know the whole expression is false as soon as we encounter any
false. For the logical OR, we know the whole expression is trueas soon as we encounter any true.

There is no need to continue evaluation once the boolean value of the overall expression is deter-
mined (so beware ofside effectsin your conditions!).

We will consider this idea more carefully when we work on assembly programming.

There are alsobitwiselogical operators that work individually on all bits in their operands:

• bitwise AND (&) – result true when both operands true

& 0 1
0 0 0
1 0 1

• bitwise OR (|) – result true when either operand true

| 0 1
0 0 1
1 1 1

• bitwise XOR (̂) – result true when exactly one operand true

ˆ 0 1
0 0 1
1 1 0

13

CS 220 Assembly Language & Computer Architecture Fall 2010

• bitwise complement (˜) – result true when operand false

˜
0 1
1 0

• Addition (+) – we have a 2-bit result

+ 0 1
0 00 01
1 01 10

Note that the 2’s bit is just a logical AND, the 1’s bit is an XOR.

We’ll use this later on when building adder circuits.

• Bitwise shift by n (x>>n or x<<n)

“logical shift right” and “logical shift left”

i>>1 is division by 2

For negatives, a logical shift right gives the wrong answer:

(-2) >> 1 would take 1110 and give 0111, which is 7. Definitely not the right answer for−2

2
.

Thearithmetic shiftcopies the sign bit for values being shifted in.

So (-2)>> 1 would take 1110 and get 1111, the right answer (-1)

In C, >> is a logical shift right for an unsigned value, an arithmeticshift right for a signed
value (which, fortunately, is exactly the right thing to do).

In Java (but not C) arithmetic shift right (>>>), but there is no arithmetic shift left.

j<<k is multiplication by2k

(Aside: C has no power operator – call pow() –don’t useˆ (that’s the bitwise XOR!))

• Some interesting and useful operations:

– To set biti in a valuen (note bits are numbered right to left)

n = n | (1 << i)

or better yet

n |= (1 << i)

– To maskbit i in valuen (we want the value of biti to remain unchanged, all others
become 0)

n &= (1 << i)

– To toggle biti in n

n ˆ= (1 << i)

– We can generalize this to any set of bits, e.g. to mask the low nibble:

n &= 0xF

14

CS 220 Assembly Language & Computer Architecture Fall 2010

An example that uses these:

See Example:
˜jteresco/shared/cs220/examples/shiftyproduct

Floating point values
So far we have ignored non-integer numbers. We can store any integer in our unsigned or signed
formats, given enough bits.

What about all those other numbers that aren’t integers? Rational numbers, or even real numbers?

Let’s think about the way we represent these things in our “normal” base-10 world.

3.5,
2

3
, 1.7 × 1014

We can use decimal notation, fractions, scientific notation.

Fractions seem unlikely as our binary representation, but we can use the decimal notation. More
precisely, instead of a decimal point, we have aradix point.

11.1 = 2+1+1
2

= 3.5, 0.11 =1

2
+1

4
= 3

4

Just like we can’t represent some fractions in decimal notation, we can’t represent some fractions
in binary notation either.

Remember1
3

= .3

Consider:.10

What value is this?1
2

+ 1

8
+ 1

32
+ ...

x = .1010
1

2
x = .0101

x +
1

2
x = .1 = 1

x =
2

3

How about.1100?

x = .1100
1

4
x = .0011

x +
1

4
x = 1

15

CS 220 Assembly Language & Computer Architecture Fall 2010

x =
4

5

How can we denote an arbitrary fractional value, say,1

5
?

We can follow this procedure:

1. Multiply by 2, write integer part.

2. Keep fractional part, repeat until 0, or a repeating pattern emerges.

So 1

5
= .001100110011...

When representing these in the computer, we have lots of decisions to make, such as how we place
the radix point, etc. We want to store a wide range of values, but we’re limited to2n unique values
in anyn-bit representation.

Scientific notation helps us here. Consider some examples:

.0001011 = 1.011 × 2−4

.1 = 1. × 2−1

1.1 = 1.1 × 20

−101 = −1.01 × 22

1111 = 1.111 × 23

Floating point = integer part+ mantissa× 2exponent

mantissasign exponent

If we use binary version of scientific notation, we note that all numbers (other than 0) have a
leading 1. So we need not store it! This is known as thephantom 1bit.

The mantissais fractional, with the most significant bit representing the 1

2
’s bit, the next the1

4
’s

bit, etc.

Theexponentis stored in excess notation (which is helpful for hardware that must align fractional
values before addition or subtraction).

What about 0? It would be nice if that was the all-0’s value. However, 00000000000000000000000000000000
really would represent something like1.0 × 2−127.

Trying to store something smaller than that value would result in a floating point underflow.

There are many standards, which can be hard to implement. These will include several useful and
unusual values, such as+∞, −∞, NaN(not a number), etc.

While it is important to have an idea of how floating-point representations work, we will largely
ignore floating point details for this course. If you understand the basics, you can look up the
details if and when you want or need to know.

16

