Computer Science 211
M C Data Structures

——__ Mount Holyoke College
MOUNT HOLYOKE COLLEGE Fa” 2009

Topic Notes: Trees

We've spent the last several weeks looking at a varietijrabr structures. There was a natural
linear ordering of the elements in arrays, vectors, linksts.| We then put some restrictions on
those structures, looking at stacks and queues and ordeead tructures.

Just like we can write programs that can branch into a numbdirections, we can design struc-
tures that have branches.

Today, we’'ll start looking at our first more complicated sture: trees.
In a linear structure, every element has unique successor.

In trees, an element may have many successors.

We usually draw trees upside-down in computer science.

You won't see trees in nature that grow with their roots atttpe(but you can see some at Mass
MoCA).

Examples of Trees

Expression trees

The expression
(2%(4-1))+((2+7)/3)

can be represented as

+
/\
/ \

* /
[\ /\
2 - + 3
[\ [\

Once we have an expression tree, how can we evaluate it?

CS 211 Data Structures Fall 2009

We evaluate left subtree, then evaluate right subtree, peeform the operation at root. The
evaluation of subtrees is recursive.

Tournament Brackets

Everyone has seen a tournament bracket:

1 4 2 3
1 8 4 5 2 7 3 6
116 8 9 413 512 215 710 3 14 6 11

(acomplete andfull tree)

or

(neither complete nor full)

Tree of Descendants

The text looks at an example of a pedigree chart — looking &rsgm’s ancestors. Instead, let's
look at a person’s descendants:

Anne
Doug Pet er
Jim Todd Doug Pam Kim Josh Ni ck
Kate Zach Al ex Rol and Rednond Dar by Mead

Definitions and Terminology

A tree is either empty or consists of r@de, called theroot node, together with a collection of
(disjoint) trees, called itsubtrees.

e An edge connects a node to its subtrees

e The roots of the subtrees of a node are said to betithdren of the node.

2

CS 211 Data Structures Fall 2009

e There may be many nodes without any successors: These &é leales or leaf nodes.
The others are calleaiterior nodes.

e All nodes except root have unique predecessopaoent.

e A collection of trees is called forest.
Other terms are borrowed from the family tree analogy:
¢ sibling, ancestor, descendant

Some other terms we’ll use:

A simple path is series of distinct nodes such that there is an edge bete&emn pair of
successive nodes.

e Thepath length is the number of edges traversed in a path (equal to the nuohibedes on
the path - 1)

e Theheight of a node is length of the longest path from that node to a leaf.
e Theheight of the treeis the height of its root node.

e Thedepth of a node is the length of the path from the root to that node.

e Thedegree of a node is number of its direct descendents.

e The idea of theevel of a node defined recursively:

— The root is at level 0.
— The level of any other node is one greater than the level atsnt.

Equivalently, the level of a node is the length of a path froenroot to that node.

We will limit our initial discussion tdinary trees — trees whose nodes are all have degte®

We will also orient the trees: each subtree of a node is detisdaking either thisft or right.

Binary Tree Interface

There are many possible specifications of binary trees tloat seasonable insertion and deletion
of elements.

We will consider the one provided in the structure package fand think about other possibilities
later.

CS 211 Data Structures Fall 2009

Unlike what we have seen to this point, the structure pacllages not define an interface for binary
trees and then use implement that in one or more concretgeslastructure simply implements
classBi nar yTr ee, so we will look right at that.

Unlike the linked list implementations, where we do not give users of the structures access to
the actual list nodes, the binary tree exposes more of ustsitte to users. The actual recursive data
structure is given directly to users. The implementatioadsgo ensure that changes that might be
made by users cannot render a tree invalid.

The tree is constructed of instances of clBssar yTr ee. EachBi nar yTr ee object has the
fields it needs to store its value and the parent and childeeées.

See Structure Source:
/[honme/jteresco/ shared/ cs211/src/structureb/ Bi naryTree. java

A node has 4 fields, which we might draw as follows:

par ent
val
left |[right

Plenty of things to notice and think about here:

e \We have three constructors.

1. The first is used to create an “emptlgl’ nar yTr ee. We will see this constructor
used by the other constructors to create these empty trgglade of havingnul |
references to represent empty subtrees. This allows makbogto be called on these,
eliminating lots of special cases. We could alsoniskl to represent empty trees, but
this would mean some extra code in several methods. Notetiaempty tree nodes
may contain aaul | value. Regular tree nodes must contain mar- values.

2. The second constructor creates a tree node with no chi{dreeaf node) containing a
particular value.

3. The third constructor creates a tree node that may hailagrehi Note that if a user of
this constructor specifiesraul | child, it is replaces with an empty tree instance.

e We have accessors to retrieve the children or parent of a node

¢ Note that the value and subtree links can be set by the usethdyparent reference is set
only in apr ot ect ed method. This is done to make sure we don'’t put the tree intad)(b
state where a parent points to a child but the child doesiit ppack to the parent.

e We have a variety of other (self-explanatory) methods toenet information about a tree:
si ze,root, hei ght,depth,isFull,isEnpty,isConpl ete. Note the recursive
nature of many of these methods.

CS 211 Data Structures Fall 2009

Binary Tree Example

We can construct a simple binary tree to represent and deadmaarithmetic expression using the
Bi nar yTr ee implementation:

((4+3)*(10-5))/2
See Example:

/[honme/jteresco/ shared/ cs211/ exanpl es/ Bi nar yExpr essi onTr ee

There are two versions of this program:

1. Bi nar yExpr essi onTr ee. j ava stores the operators and values to be us&t as ngs.

e This lets us use Bi naryTree<Stri ng>.

e Since some are operators and some are numbers, we need kaokeceat as appro-
priate, based on the contents of tter i ng.

2. Bi nar yExpr essi onTr eeQbj ect . j ava stores the operators @har act er s and the
numbers a$ nt eger s.

e Here we instead useBi nar yTr ee<Qbj ect >, since that’s the type that can repre-
sent both &har act er and anl nt eger .

e We check the actual type of the value retrieved withitimst anceof operator and
use the value as appropriate

Another option would be to define a common type along the liiése Tok ens from the postscript
lab.

In both cases, note the eeSt r i ng method that prints our binary tree in a nice format.

Tree Traversals

Iterating over all values in our linear structures is ugutdirly easy. Moreover, one or two order-
ings of the elements are the obvious choices for our itarati®ome structures, like an array or a
Vect or, allow us to traverse from the start to the end or from the exwk bo the start very easily.
A Si ngl yLi nkedLi st , however, is most efficiently traversed only from the staittie end.

For trees, there is no single obvious ordering. Do we vigtrgot first, then go down through the
subtrees to the leaves? Do we visit one or both subtreesebefiting the root?

We will consider 4 standarulee traversals for our binary trees:

1. preorder: visit the root, then visit the left subtree, then visit tight subtree.

5

CS 211 Data Structures Fall 2009

2. in-order visit the left subtree, then visit the root, then visit thghti subtree.
3. postorder: visit the left subtree, then visit the right subtree, th&sitthe root.

4. level-order: visit the node at level O (the root), then visit all nodeseatel 1, then all nodes
at level 2, etc.

For example, consider the preorder, in-order, and postdrdeersals of the expression tree we
looked at in the example code:

e preorder leads to prefix notation:
/*+43-1052

e in-order leads to infix notation:
4+3*10-5/2

e postorder leads to postfix notation:
43+105-*2/

The iterator concept fits nicely with tree traversals, batsithe code for the iterators in the text is
somewhat complex, so we will first consider traversals withterators.

In our first traversal examples, we will build a small binarget of | nt eger values and call
methods that perform the traversal. Here, “visiting” a tneele involves passing its value to the
methodpr ocess.

See Example:
/ home/ j teresco/ shared/ cs211/ exanpl es/ BTTraversal s

First, note the construction of the tree. We build the treenfbbottom up, but do not store the
subtrees in local variables during construction — we sinsplystruct them in the parameters of the
constructor for the next level up.

Now, consider each of the traversal implementations. Theder, preorder, and postorder traver-
sls work exactly as we would expect. Each is recursive, andisiethe subtrees and the root node
as defined for each ordering.

The level-order traversal is a bit trickier. We need to vik# root of each subtree before doing
anything in the next level. This calls for a queue!

For all of the others, we used a stack, just without thinkibgud it. We took advantage of the call
stack to support the recursion!

Tree Iterators

The structure package has implementations of iteratoessioh of these four traversals. Whereas in
thedo{pr e, post, i n}or der methods above, we were able to take advantage of the corisputer
run-time stack, we need to have a stack explicitly declaneldsed in the iterator implementations.

CS 211 Data Structures Fall 2009

The complexity of the iterators varies with the type of tnoat.

We need to make sure we get things onto the stack (or queu®s tase of the level order) in the
right order.

At any time, we want the stack/queue to contain the tree nthdestill need to be visited.
Visiting a non-leaf node will result in additional nodesiigiadded to the stack/queue.
In all cases, iteration can continue as long as somethingirenon the stack/queue.

We will consider this example tree:

In each case, recall that we need to satisfy the iteratarfade (actually, thébst ract | t er at or
in structure) by providing:

. aconstructor

. areset method

1
2
3. ahasNext method
4. anext method

5

. aget method

We look at each in turn.

See Structure Source:
/[home/jteresco/ shared/ cs211/src/structure5/ BTPreorderlterator.java

Our preorder traversal visits the root first, followed by kb subtree, then the right subtree.

Recall that we implicitly used the run-time stack for the ntmmator traversal code. Here, we
manage the stack.

At any point, we want the tree node on the top of the stack tth@é@éxt tree node that needs to be
visited.

We want to visit the root, then the left subtree, then thetragitotree.

So to start or reset our iteration, we initialize the stacthwile root node.

7

CS 211 Data Structures Fall 2009

A next operation justinvolves popping, then processing the nodewof the stack, then pushing
its right and left subtrees (in that order, since we want txess the left first).

Finally, we can implemerttasNext by just checking if the stack is empty, which will tell is that
the traversal has been completed.

See Structure Source:
/[honme/jteresco/ shared/ cs211/src/structure5/ BTl norderlterator.java

For this traversal, we need to visit the left subtree, therdtot, then the right subtree.

Here, the first thing we want to visit is the deepest, leftnobdtd. So we need to initialize the state
of our iterator so that that node (the deepest, leftmostislon top of the stack. To do this, we
push the root, and all of the left subtrees until we come todemwehich doesn’t have a left subtree.

A next operation here involves popping the top value off the stadie returned, then dealing
with its right subtree. The first thing there that needs tgoleags again its leftmost branch, so we
need to push the right subtree then all of its left children.

See Structure Source:
/ home/ j teresco/ shared/ cs211/ src/ structure5/ BTPostorderlterator.java

Here, we visit the left subtree, then the right subtree, aralfi the root.

This is the tricky one. First, if there is a left subtree, wedéo push down through those left
subtrees as far as we can. If any node has no left subtree $atrght subtree, push that instead.
Continue to a leaf.

A next operation involves popping the top value to be returnedhdfthing we just popped is a
left child, push the sibling and its left children (or righhen there is no left) until we get to a leaf
again.

See Structure Source:
/ hone/ jteresco/ shared/ cs211/src/structure5/ BTLevel orderlterator.java

Here, we visit the tree level by level.

This one is actually quite easy. We have a queue instead ath. st
We start by enqueueing the root, as this is the first thing wet teavisit.
When we visit a node, we enqueue its children.

TheBTTr aver sal s example also demonstrates the use of these iterators.

Example Application: Huffman Compression

The text has a few examples that make use of binary trees. Wsp&nd a few minutes looking
at Huffman Compression.

The idea here is to reduce the amount of space needed to sttynegpof characters. Usually, we
store characters with 8 bits each, meaning we can store 2ip=ta256 different characters.

CS 211 Data Structures Fall 2009

However, many strings don’t use that many different charactlf we had a string that used only
12 unique characters, we could define patterns of 4 bits ea@ptesent them and save half of the
space.

The idea behind Huffman compression is that we can do eveerlieive use short strings of bits
to represent frequently seen characters and infrequerdatieas with longer strings.

To do this, we need to come up with a code and a way to trangatento code and then back
again.

Consider this procedure to generate a translation system.

Count the number of each character in the string to represeintr@ate a single-node BinaryTree
with that character and its count as the value. Repeateddytheksmallest two trees in the collec-
tion and combine them to a new tree which has the two treedxdieess and label the root with the
sum of their counts. Continue combining trees (both the oaigbne-element trees and the trees
created) in this manner until a single tree remains.

Consider the phrase:
no... try not... do... or donot... there is no try...

We count the letters up:

n=4, o=7, .=15,=10, t=5, r=4, y=2, d=2, h=1, e=2, i=1, s=1

and build the tree.

Once we have that, we can use it to construct our encoded (essgdl) string.

To decode, we just trace the bit patterns through the tree n\Wileeencounter a leaf, we know the
next letter. We then start tracing at the root again.

See Text Example:
/ honme/jteresco/ shared/ cs211/ eg/ structure5/ Huf f man. j ava

