
Computer Science 211
Data Structures
Mount Holyoke College
Fall 2009

Topic Notes: Sorting

Searching and sorting are very common operations and are also important examples to demonstrate
complexity analysis.

Searching
Before we deal with sorting, we briefly consider searching.

Linear Search

As you certainly know, a search is the method we use to locate an instance of a data item with a
particular property within a collection of data items. The method used for searching depends on
the organization of the data in which we are searching.

To start, we will assume we are searching for a particular value in an array ofint.

The linear search is very straightforward. We simply compare the element we’re looking for with
successive elements of the array until we either find it or runout of elements.

public static int search (int[] elts, int findElt) {
int index = 0;
while (index < elts.length) {

if (findElt == elts[index])
return index;

index++;
}
return -1; // Didn’t find elt.

}

Some properties of this linear search for an array of sizen:

• On average, this will requiren
2

compares if element is in the array.

• It requiredn compares if element not in array (worst case).

• Both areO(n).

Note that we can very easily modify the search method to work on any array ofObjects:



CS 211 Data Structures Fall 2009

public static int search (Object[] elts, int findElt) {
int index = 0;
while (index < elts.length) {

if (findElt.equals(elts[index]))
return index;

index++;
}
return -1; // Didn’t find elt.

}

We can get away with this because allObjects are required to have anequals method, and this
is the only comparison needed for a linear search.

Binary search

The linear search is the best we can do if we have no information about the ordering of the data in
our array. However, if we haveordered data, we can use abinary search.

Here, we start by considering the middle element in the array:

• If the middle element is the search element, then we’re done.

• If the middle element smaller than search element, then we know the element, if it is in our
array, can be found by a binary search of the bigger elements.

• If the middle element larger than search element, then we do abinary search of the smaller
elements.

See Example:
/home/jteresco/shared/cs211/examples/BinSearch

Notice that we had to write a protected helper method to do thesearch recursively, since a user of
this search shouldn’t need to specify a start and end in theirmethod call. From their point of view,
they should need only specify the array and the element to be located.

This is a classic example of adivide and conquer approach.

Each recursive call will lead to at most two compares.

What is maximum number of recursive calls?

• Each time we make a recursive call, we divide size of array to be searched in half.

• How many times can we divide a number in half before there is only 1 element left?

• If you start with2k then divide to2k−1, 2k−2, 2k−3, ...,20 = 1; dividek times by 2.

2



CS 211 Data Structures Fall 2009

• In general can dividen by 2 at mostlog n times to get down to 1. In this course, we will
write log n and understand that we meanlog

2
n.

There are at most(log n) + 1 invocations of the method and therefore at most2 · ((log n) + 1)
comparisons. This isO(log n) comparisons.

Comparable Objects

If we are going to deal withObjects for a binary search, we need a way to compare them. We
can write a method that compares anObject to another, like thecompareTo() method of
Strings. However, there is nocompareTo method inObject.

Fortunately, Java provides an interface that does exactly this, theComparable interface. Any
object that implementsComparable will have acompareTo method, so if we write our search
(and next up, sorting) routines to operate onComparables, we will be all set.

See Example:
/home/jteresco/shared/cs211/examples/BinSearch

Note the weird syntax. In this case, we don’t have a generic type for the class, we have it just for
these methods.

The<T extends Comparable>means that any class can be used for the type of the array and
search element, as long as the array was declared and constructed as some type that implements
theComparable interface.

Several standard Java classes implement theComparable interface, including things likeInteger
andDouble.

So we can write methods that expect objects that extendComparable, and be guaranteed that an
appropriatecompareTo method will be provided.

Sorting
Computers spend a lot of time sorting data. Some have claimed that anywhere from1

4
to 1

3
of all

computation time is spent doing sorting. We already saw thatsorting data makes searching much
more efficient. Now we consider how to approach sorting.

Suppose our goal is to take a shuffled deck of cards and to sort it in ascending order. We’ll ignore
suits, so there is a four-way tie at each rank.

Describing a sorting algorithm precisely can be difficult. Let’s consider arrays of items to be sorted.
The text starts with arrays of ints for simplicity, but we will considerComparables, as we saw
in our generic binary search.

An extremely inefficient (both in time and space) but correctway to sort would be to construct
all possible permutations of the array (there aren! of them) and then look at each one in a linear
time search to see if all pairs of adjacent objects are in the right order (each of these searches is
potentiallyO(n)). We can do better.

3



CS 211 Data Structures Fall 2009

We will build sorting procedures out of two main operations:

• compare two elements

• swap two elements

We know how to compare base types, and we saw the idea ofComparables for comparing
objects that provide acompareTo() method.

A swap is very easy to write in Java. If we have an array of some base type, we can write:

public static void swap(int data[], int i, int j) {

int temp = data[i];
data[i] = data[j];
data[j] = temp;

}

If we have an array ofObject references, we can easily just change the types of the array and the
temp variable.

public static void swap(Object data[], int i, int j) {

Object temp = data[i];
data[i] = data[j];
data[j] = temp;

}

Or, using generics:

public static <T> void swap(T[] data, int a, int b) {

T temp = data[a];
data[a] = data[b];
data[b] = temp;

}

In this case, there is no great benefit to the generic version.We don’t really care what the types
of the elements of the array actually are. We are not treatingthem as anything more specific than
Objects.

However, if you need to write a swap method inside a generic class, you will need to use the
generic type.

4



CS 211 Data Structures Fall 2009

Bubble Sort

We begin with a very intuitive sort. We just go through our array, looking at pairs of values and
swapping them if they are out of order.

It takesn− 1 “bubble-ups”, each of which can stop sooner than the last, since we know we bubble
up one more value to its correct position in each iteration. Hence the namebubble sort.

So we do(n − 1) + (n − 2) + ... + 1 = O(n2) comparisons. We swap, potentially, after each one
of these, forO(n2) swaps.

Remember that a swap involves three assignments, which wouldbe more expensive than the indi-
vidual comparisons.

The text has code for an iterative bubble sort ofints. You can easily change this to a sort of
Comparables the same way we changed our binary search example fromints toComparables.

Think about how you’d write a recursive bubble sort.

Selection Sort

Our first improvement on the bubble sort is based on the observation that one pass of the bubble
sort gets us closer to the answer by moving the largest unsorted element into its final position.
Other elements are moved “closer” to their final position, but all we can really say for sure after a
single pass is that we have positioned one more element.

So why bother with all of those intermediate swaps? We can just search through the unsorted part
of the array, remembering the index of (and hence, the value of) the largest element we’ve seen so
far, and when we get to the end, we swap the element in the last position with the largest element
we found. This is theselection sort.

Here, we do the same number of comparisons, but at mostn − 1 = O(n) swaps.

The text has an iterative selection sort onints. Let’s look at a recursive selection sort method on
objects that implementComparable.

See Example:
/home/jteresco/shared/cs211/examples/SortingComparisons/SelectionSort

Insertion Sort

Consider applying selection sort to an already-sorted array. We still need to make allO(n2) com-
parisons (but no swaps). This is unfortunate. There’s a goodchance that sorting routines could be
called frequently on already-sorted or nearly-sorted data.

Our next procedure does better in those situations.

The idea is that we build up the sorted portion of the array, one item at a time, by inserting the next
unsorted element into its final location. Everything else iscascaded up to make room. This is the
insertion sort.

5



CS 211 Data Structures Fall 2009

See Example:
/home/jteresco/shared/cs211/examples/SortingComparisons/InsertionSort

The complexity here isO(n2) again. The call torecInsSort(n-1,elts) takes≤ n∗(n−1)/2
comparisons.

Because ourwhile loop might quit early, an insertion sort only uses half as many comparisons
(on average) than selection sort. Thus, it’s usually twice as fast (but stillO(n2)).

Insertion sort also has much better behavior on sorted or nearly-sorted data. Each insertion might
stop after just one comparison, leading toO(n) behavior in this best case circumstance.

Merge sort

Each procedure we have considered so far is an “in-place” sort. They require onlyO(1) extra space
for temporary storage.

Next, we consider a procedure that usesO(n) extra space in the form of a second array.

It’s based on the idea that if you’re given two sorted arrays,you can merge them into a third inO(n)
time. Each comparison will lead to one more item being placedinto its final location, limiting the
number of comparisons ton − 1.

In the general case, however, this doesn’t do anything for our efforts to sort the original array. We
have completely unsorted data, not two sorted arrays to merge.

But we can create two arrays to merge if we split the array in half, sort each half independently,
and then merge them together (hence the need for the extraO(n) space).

If we keep doing this recursively, we can reduce the “sort half of the array” problem to the trivial
cases.

This approach, themerge sort, was invented by John von Neumann in 1945.

How many splits will it take?O(log n)

Then we will haveO(log n) merge steps, each of which involves sub-arrays totaling in size ton, so
each merge (which will bek independent merges inton

k
-element arrays) step hasO(n) operations.

This suggests an overall complexity ofO(n log n).

The text has some example code for this. Again, you can easilyconvert it from its current func-
tionality, sortingints to sortComparables.

See Example:
/home/jteresco/shared/cs211/examples/SortingComparisons/MergeSort

Note that this implementation uses a clever way to allow copying only half of the array into the
temp array at each step.

Quicksort

6



CS 211 Data Structures Fall 2009

Another very popular divide and conquer sorting algorithm is thequicksort. This was developed
by C. A. R. Hoare in 1962.

Unlike merge sort, quicksort is an in-place sort.

While merge sort divided the array in half at each step, sortedeach half, and then merged (where
all work is in the merge), quicksort works in the opposite order.

That is, quicksort splits the array (which takes lots of work) into parts consisting of the “smaller”
elements and of the “larger” elements, sorts each part, and then puts them back together (trivially).

It proceeds by picking apivot element, moving all elements to the correct side of the pivot, re-
sulting in the pivot being in its final location, and two subproblems remaining that can be solved
recursively.

See Example:
/home/jteresco/shared/cs211/examples/SortingComparisons/QuickSort

In this case the leftmost element is chosen as the pivot. Put it into its correct position and put all
elements on their correct side of the pivot.

If partition works thenquickSort clearly works.

Note: we always make a recursive call on a smaller array (but it’s easy to make a coding mistake
where it doesn’t, and then the sort never terminates).

The complexity of quicksort is harder to evaluate than mergesort because the pivot will not always
wind up in the middle of the array (in the worst case, the pivotis the largest or smallest element).

Thepartition method is clearlyO(n) because every comparison results inleft or right
moving toward the other and quit when they cross.

In the best case, the pivot element is always in the middle andthe analysis results inO(n log n),
exactly like merge sort.

In the worst case the pivot is at one of the ends and quicksort behaves like a selection sort, giving
O(n2).

A careful analysis can show that quicksort isO(n log n) in the average case (under reasonable
assumptions on distribution of elements of array).

Correctness and Complexity Proofs
Just as we used the principle of mathematical induction to prove properties of mathematical formu-
las, we can use it to prove statements about the correctness and complexity of recursive algorithms.

To prove correctness of a procedure like our recursive selection sort, our proof by mathematical
induction will take the form:

1. Prove the base case(s). (Usually this is trivial – an emptyor one-element instance)

2. Show that if the algorithm works correctly for all simpler(i.e., smaller) input, then it will

7



CS 211 Data Structures Fall 2009

work for current input.

A Simple Correctness Proof: FastPower

Consider this method:

// pre: exp >= 0
// post - Returns base raised to exp

public static int fastPower(int base, int exp) {
if (exp == 0)

return 1;
if (exp%2 == 1) // exp is odd

return base * fastPower(base, exp-1);
return fastPower(base * base, exp / 2);

}

We wish to show that the method is correct, thatfastPower(base,exp) = baseexp.

Proof: We will proceed by mathematical induction on the value ofexp.

Base case:exp = 0, fastPower(base,0) = 1 = base0 – correct

Inductive hypothesis: Assume thatfastPower(base,exp) = baseexp for all exp < n.

Inductive step: Show thatfastPower(base,n) = basen

There are two cases to consider:

• n is odd: fastPower(base,n) = base * fastPower(base, n-1) = base ∗

basen−1 (by induction)= basen

• n is even:fastPower(base,n) = fastPower(base*base,n / 2) = (base2)(n/2)
(by induction)= basen (sincen is even)

Therefore by mathematical induction, the method works correctly for all values ofexp <= 0. ⋄

Correctness Proof for Recursive Selection Sort

We wish to prove the correctness of therecSelSort algorithm given earlier.

Proof: We will proceed by mathematical induction on the sizeof the unsorted portion of the array
elts. This is determined by the parameterlastIndex.

Base case: IflastIndex == 0 then the single entry atelts[0] is the only part of the array
we are considering. This is trivially sorted.

Inductive Hypothesis: Suppose the algorithm is correct when lastIndex < n.

Inductive step: Show that it is correct forlastIndex = n (> 0).

8



CS 211 Data Structures Fall 2009

The for loop finds largest element in the unsorted part of the array and then swaps it with
elts[lastIndex].

Thus, at the end of the loop,elts[lastIndex] holds the largest element of the array.

SincelastIndex - 1 < lastIndex, we know (by the inductive hypothesis) thatrec-
SelSort(lastIndex-1,elts) sortselts[0..lastIndex-1] correctly.

So at the end of the method,elts[0..lastIndex-1] are in order andelts[lastIndex]
is ≥ all of them, so all ofelts[0..lastIndex] is sorted.

Therefore by mathematical induction, this implementationof a recursive selection sort is correct.
⋄

Complexity Proof for Recursive Selection Sort

Claim: recSelSort(n-1,elts) (i.e, the sort of ann-element array) involvesn ∗ (n − 1)/2
comparisons of elements of the array.

Proof: We proceed by mathematical induction on the size of the array to sort.

Base case: Forn = 1, we require 0 comparisons andn ∗ (n − 1)/2 = 0.

Inductive hypothesis: SupposerecSelSort(k-1,elts) requiresk ∗ (k − 1)/2 comparisons
for all k < n.

Inductive step: Show thatrecSelSort(n-1,elts) requiresn ∗ (n − 1)/2 comparisons.

In the method,lastIndex will be n − 1. Since our main loop will execute the comparison
lastIndex times, we will incurn − 1 comparisons.

Any additional comparisons will take place in the recursivecall: recSelSort(last-1,elts)
wherelast = n − 1.

But by our inductive hypothesis (sincelast < n), this takeslast∗(last−1)/2 = (n−1)∗(n−2)/2
comparisons.

Therefore, we have a total of(n−1)+(n−1)∗ (n−2)/2 = (n−1)∗2/2+(n−1)∗ (n−2)/2 =
(n − 1) ∗ (2 + n − 2)/2 = (n − 1) ∗ n/2 = n(n − 1)/2 comparisons.

By the principle of mathematical induction, we see that the sort of anyn-element array will involve
n ∗ (n − 1)/2 comparisons.⋄

This matches with our previous statements thatrecSelSort takesO(n2) comparisons.⋄

Correctness of Recursive Merge Sort

It’s easy to show thatmergeSortRecursive is correct ifmerge is correct, asmerge is where
all the work takes place.

But merge is not recursive! It is easy toconvince yourself thatmerge is correct, but a formal
proof of correctness of iterative algorithms is actually harder than for recursive algorithms, and we

9



CS 211 Data Structures Fall 2009

will not prove this here.

Complexity of Recursive Merge Sort

It is straightforward to see that if the portion of the array under consideration hask elements (i.e.,
k = high − low + 1), then the complexity ofmerge is O(k):

• If we only look at comparisons, then it’s clear that every comparison in theif statement in
thewhile loop results in an element being copied intodata.

• In the worst case, you run out of all elements in one run when there is only 1 element left in
the other run:k − 1 comparisons, givingO(k)

• If we count copies of elements, then it’s alsoO(k) sincek
2

copies are made in copying half
of data into temp, and then anywhere fromk

2
to k more copies in putting elements back

(in order) intodata.

We will prove the complexity by induction.

Claim: The complexity ofmergeSortRecursive, as measured by the number of comparisons,
is O(n log n) for sort ofn elements.

It’s easiest to prove this if we assume thatn = 2m for somem. The general case can be extended
to 2m by padding the array with very large values, so this is sufficient.

We proceed by mathematical induction onm to show that a sort ofn = 2m elements takes≤
n log n = 2m · m compares.

Base case:m = 0, son = 1. No work is needed here, so the 0 needed compares≤ 20 ∗ 0.

Inductive Hypothesis: Suppose our claim is true form − 1, that the sort takes≤ 2m−1 · (m − 1)
compares.

Inductive Step: We show that the claim is true form.

mergeSortRecursive of n = 2m elements proceeds by doingmergeSortRecursive of
two lists of sizen

2
= 2m−1, followed by a call ofmerge on list of sizen = 2m.

Therefore,numcompares ≤ 2m−1 ∗(m−1)+2m−1 ∗(m−1)+2m = 2∗(2m−1 ∗(m−1))+2m =
2m ∗ (m − 1) + 2m = 2m ∗ ((m − 1) + 1) = 2m ∗ m. Therefore by mathematical induction,
numcompares ≤ 2m ∗ m = n log n. ⋄

Similar arguments can be made to show that the number of copies isO(n log n).

Radix Sort
We can’t do better thanO(n log n) in the average case for a general-purpose sort with no assump-
tions on the input data and original ordering.

10



CS 211 Data Structures Fall 2009

We can actually do a sort inO(n) time if we take advantage of some knowledge of the input array.
We will not discuss it in class at this point, but the text describes one such approach, theradix sort.

11


