Computer Science 211
M C Data Structures

——__ Mount Holyoke College
MOUNT HOLYOKE COLLEGE Fa” 2009

Topic Notes: Sorting

Searching and sorting are very common operations and areng®rtant examples to demonstrate
complexity analysis.

Sear ching

Before we deal with sorting, we briefly consider searching.

Linear Search

As you certainly know, a search is the method we use to logaiestance of a data item with a
particular property within a collection of data items. Thethod used for searching depends on
the organization of the data in which we are searching.

To start, we will assume we are searching for a particulareval an array of nt .

Thelinear search is very straightforward. We simply compare the element evpking for with
successive elements of the array until we either find it orawirof elements.

public static int search (int[] elts, int findEIt) {
int index = 0;
while (index < elts.length) {
if (findElt == elts[index])
return index;
i ndex++;

}
return -1; [/ Ddn't find elt.

Some properties of this linear search for an array of size

¢ On average, this will requirg compares if element is in the array.
e It requiredn compares if element not in array (worst case).

e Both areO(n).

Note that we can very easily modify the search method to warény array ofCbj ect s:

CS 211 Data Structures Fall 2009

public static int search (Object[] elts, int findElt) {
int index = 0;
while (index < elts.length) {
if (findElt.equals(elts[index]))
return index;
I ndex++;

}
return -1; [/ Didn't find elt.

We can get away with this because@tlj ect s are required to have agual s method, and this
is the only comparison needed for a linear search.

Binary search

The linear search is the best we can do if we have no informatimut the ordering of the data in
our array. However, if we havardered data, we can uselanary search.

Here, we start by considering the middle element in the array

o If the middle element is the search element, then we're done.

o If the middle element smaller than search element, then werkhe element, if it is in our
array, can be found by a binary search of the bigger elements.

¢ If the middle element larger than search element, then wehlidpnaay search of the smaller
elements.

See Example:
/ home/ j teresco/ shared/ cs211/ exanpl es/ Bi nSear ch

Notice that we had to write a protected helper method to dedlaech recursively, since a user of
this search shouldn’t need to specify a start and end in thethod call. From their point of view,
they should need only specify the array and the element todagdd.

This is a classic example ofdavide and conquer approach.
Each recursive call will lead to at most two compares.

What is maximum number of recursive calls?

e Each time we make a recursive call, we divide size of arrayetedarched in half.
e How many times can we divide a number in half before there ig brelement left?

e If you start with2* then divide ta2*—1, 2+=2 2+=3 20 =1: dividek times by 2.

CS 211 Data Structures Fall 2009
e In general can divide by 2 at mostlog n times to get down to 1. In this course, we will
write log n and understand that we mekg, n.

There are at modlogn) + 1 invocations of the method and therefore at mst((logn) + 1)
comparisons. This i®(logn) comparisons.

Conpar abl e hj ect s

If we are going to deal witltbj ect s for a binary search, we need a way to compare them. We
can write a method that compares @nj ect to another, like theeonpar eTo() method of
St ri ngs. However, there is noonpar eTo method inObj ect .

Fortunately, Java provides an interface that does exdutly theConpar abl e interface. Any
object that implementS€onpar abl e will have aconpar eTo method, so if we write our search
(and next up, sorting) routines to operate@mpar abl es, we will be all set.

See Example:
/ home/ j teresco/ shared/ cs211/ exanpl es/ Bi nSear ch

Note the weird syntax. In this case, we don’t have a genepie fgr the class, we have it just for
these methods.

The<T ext ends Conpar abl e> means that any class can be used for the type of the array and
search element, as long as the array was declared and atedtas some type that implements
theConpar abl e interface.

Several standard Java classes implemer@dmpar abl e interface, including things likent eger
andDoubl e.

So we can write methods that expect objects that ex@amgpar abl e, and be guaranteed that an
appropriateconpar eTo method will be provided.

Sorting

Computers spend a lot of time sorting data. Some have claihednhywhere fron to ; of all
computation time is spent doing sorting. We already sawdbeing data makes searching much
more efficient. Now we consider how to approach sorting.

Suppose our goal is to take a shuffled deck of cards and tot$escending order. We'll ignore
suits, so there is a four-way tie at each rank.

Describing a sorting algorithm precisely can be difficuket’s consider arrays of items to be sorted.
The text starts with arrays of ints for simplicity, but we MdbnsiderConpar abl es, as we saw
in our generic binary search.

An extremely inefficient (both in time and space) but cormealy to sort would be to construct
all possible permutations of the array (there aref them) and then look at each one in a linear
time search to see if all pairs of adjacent objects are initte order (each of these searches is
potentiallyO(n)). We can do better.

CS 211 Data Structures Fall 2009

We will build sorting procedures out of two main operations:

e compare two elements

e swap two elements

We know how to compare base types, and we saw the id€&oopar abl es for comparing
objects that provide aonpar eTo() method.

A swap is very easy to write in Java. If we have an array of soase ltype, we can write:

public static void swap(int data[], int i, int j) {

int tenp = datali];
data[i] = data[j];
data[j] = tenp;

}

If we have an array ofbj ect references, we can easily just change the types of the anchtha
temp variable.

public static void swap(CObject data[], int i, int j) {

object tenp = datali];
datafi] datalj];
data[j] t enp;

}

Or, using generics:

public static <T> void swap(T[] data, int a, int b) {

T tenp = data[a];
dat a[a] dat a[b] ;
dat a[b] t enp;

}

In this case, there is no great benefit to the generic verdidemdon’t really care what the types
of the elements of the array actually are. We are not tredtiegn as anything more specific than
oj ect s.

However, if you need to write a swap method inside a genedssglyou will need to use the
generic type.

CS 211 Data Structures Fall 2009

Bubble Sort

We begin with a very intuitive sort. We just go through ouragrrlooking at pairs of values and
swapping them if they are out of order.

It takesn — 1 “bubble-ups”, each of which can stop sooner than the lastesive know we bubble
up one more value to its correct position in each iteratioend¢d the nambubble sort.

Sowe do(n — 1) + (n —2) + ... + 1 = O(n?) comparisons. We swap, potentially, after each one
of these, forO(n?) swaps.

Remember that a swap involves three assignments, which veeuldore expensive than the indi-
vidual comparisons.

The text has code for an iterative bubble sort oft s. You can easily change this to a sort of
Conpar abl esthe same way we changed our binary search examplda fmratoConpar abl es.

Think about how you’d write a recursive bubble sort.

Selection Sort

Our first improvement on the bubble sort is based on the oasenvthat one pass of the bubble
sort gets us closer to the answer by moving the largest wetsetement into its final position.
Other elements are moved “closer” to their final positiort,dlwe can really say for sure after a
single pass is that we have positioned one more element.

So why bother with all of those intermediate swaps? We carsgerch through the unsorted part
of the array, remembering the index of (and hence, the vdjube largest element we've seen so
far, and when we get to the end, we swap the element in thedagtgn with the largest element
we found. This is theelection sort.

Here, we do the same number of comparisons, but at mest = O(n) swaps.

The text has an iterative selection sortiamt s. Let’s look at a recursive selection sort method on
objects that implemer@onpar abl e.

See Example:
/ home/ j teresco/ shared/ cs211/ exanpl es/ Sorti ngConpari sons/ Sel ecti onSort

I nsertion Sort

Consider applying selection sort to an already-sorted aWystill need to make alD(n?) com-
parisons (but no swaps). This is unfortunate. There’s a gbadce that sorting routines could be
called frequently on already-sorted or nearly-sorted.data

Our next procedure does better in those situations.

The idea is that we build up the sorted portion of the arrag,itgm at a time, by inserting the next
unsorted element into its final location. Everything elseascaded up to make room. This is the
insertion sort.

CS 211 Data Structures Fall 2009

See Example:
/[hone/jteresco/ shared/ cs211/ exanpl es/ Sorti ngConpari sons/ I nsertionSort

The complexity here i (n?) again. The callto ecl nsSort (n- 1, el t s) takes< nx(n—1)/2
comparisons.

Because ounhi | e loop might quit early, an insertion sort only uses half as yneamparisons
(on average) than selection sort. Thus, it's usually twicéaat (but stillO(n?)).

Insertion sort also has much better behavior on sorted atysgarted data. Each insertion might
stop after just one comparison, leadingt(n) behavior in this best case circumstance.

Merge sort

Each procedure we have considered so far is an “in-placé”Bbey require only)(1) extra space
for temporary storage.

Next, we consider a procedure that uégs) extra space in the form of a second array.

It's based on the idea that if you're given two sorted arrggs,can merge them into a third di(n)
time. Each comparison will lead to one more item being plactwits final location, limiting the
number of comparisons to— 1.

In the general case, however, this doesn’t do anything foetiarts to sort the original array. We
have completely unsorted data, not two sorted arrays toanerg

But we can create two arrays to merge if we split the array ifi Batt each half independently,
and then merge them together (hence the need for the@ktrpspace).

If we keep doing this recursively, we can reduce the “sort tladhe array” problem to the trivial
cases.

This approach, thenerge sort, was invented by John von Neumann in 1945.
How many splits will it take?(log n)

Then we will haveD (log n) merge steps, each of which involves sub-arrays totaling@ten, so
each merge (which will bé independent merges intoelement arrays) step hé¥n) operations.

This suggests an overall complexity©fn log n).

The text has some example code for this. Again, you can eewilyert it from its current func-
tionality, sortingi nt s to sortConpar abl es.

See Example:
/ home/ j teresco/ shared/ cs211/ exanpl es/ Sorti ngConpari sons/ Mer geSort

Note that this implementation uses a clever way to allow capynly half of the array into the
temp array at each step.

Quicksort

CS 211 Data Structures Fall 2009

Another very popular divide and conquer sorting algoritisnthiequicksort. This was developed
by C. A. R. Hoare in 1962.

Unlike merge sort, quicksort is an in-place sort.

While merge sort divided the array in half at each step, satath half, and then merged (where
all work is in the merge), quicksort works in the oppositeesrd

That is, quicksort splits the array (which takes lots of worito parts consisting of the “smaller”
elements and of the “larger” elements, sorts each part,ferdgduts them back together (trivially).

It proceeds by picking @ivot element, moving all elements to the correct side of the pirest
sulting in the pivot being in its final location, and two sublpiems remaining that can be solved
recursively.

See Example:
/[home/jteresco/ shared/ cs211/ exanpl es/ Sorti ngConpari sons/ Qui ckSort

In this case the leftmost element is chosen as the pivot.tiubiits correct position and put all
elements on their correct side of the pivot.

If partiti on worksthenqui ckSort clearly works.

Note: we always make a recursive call on a smaller array {lsueasy to make a coding mistake
where it doesn’t, and then the sort never terminates).

The complexity of quicksort is harder to evaluate than msagebecause the pivot will not always
wind up in the middle of the array (in the worst case, the pisdhe largest or smallest element).

Thepartiti on method is clearlyO(n) because every comparison resultd &f t orri ght
moving toward the other and quit when they cross.

In the best case, the pivot element is always in the middletlamdnalysis results i@ (n logn),
exactly like merge sort.

In the worst case the pivot is at one of the ends and quickstides like a selection sort, giving
O(n?).

A careful analysis can show that quicksort$n logn) in the average case (under reasonable
assumptions on distribution of elements of array).

Correctness and Complexity Proofs

Just as we used the principle of mathematical inductiondagproperties of mathematical formu-
las, we can use it to prove statements about the correctndsoeplexity of recursive algorithms.

To prove correctness of a procedure like our recursive setesort, our proof by mathematical
induction will take the form:

1. Prove the base case(s). (Usually this is trivial — an erapgne-element instance)

2. Show that if the algorithm works correctly for all simplge., smaller) input, then it will

7

CS 211 Data Structures Fall 2009

work for current input.

A Simple Correctness Proof: FastPower
Consider this method:
[l pre: exp >=0

/1 post - Returns base raised to exp
public static int fastPower(int base, int exp) {

if (exp == 0)
return 1,
if (exp% == 1) /1 exp is odd

return base * fastPower(base, exp-1);
return fastPower(base » base, exp / 2);

We wish to show that the method is correct, thast Power (base, exp) = base?.
Proof: We will proceed by mathematical induction on the eabfiexp.

Base caseexp = 0, fastPower(base,0) = 1 = base’ —correct

Inductive hypothesis: Assume tHaast Power (base, exp) = base®? for all exp < n.
Inductive step: Show thdtast Power (base, n) = base"

There are two cases to consider:

e n is odd: f ast Power (base, n) = base * fastPower(base, n-1) = base x
base™ ! (by induction)= base™

e nisevenf ast Power (base, n) = fastPower(basexbase,n / 2) = (base?)(n/2)
(by induction)= base™ (sincen is even)

Therefore by mathematical induction, the method worksestly for all values oexp <= 0. ¢

Correctness Proof for Recursive Selection Sort
We wish to prove the correctness of thec Sel Sor t algorithm given earlier.

Proof: We will proceed by mathematical induction on the sizéhe unsorted portion of the array
el ts. This is determined by the parameterst | ndex.

Base case: IFast | ndex == 0 then the single entry &l t s[0] is the only part of the array
we are considering. This is trivially sorted.

Inductive Hypothesis: Suppose the algorithm is correctwheest | ndex < n.

Inductive step: Show that it is correct foast I ndex = n (>0).

8

CS 211 Data Structures Fall 2009

The f or loop finds largest element in the unsorted part of the arral/then swaps it with
el ts[l astlndex].

Thus, at the end of the loop] t s[| ast | ndex] holds the largest element of the array.

Sincel astl ndex - 1 < | astlndex, we know (by the inductive hypothesis) thag¢c-
Sel Sort (lastlndex-1,elts) sortsel ts[0..|astl ndex- 1] correctly.

So at the end of the methoel, t s[0. . | ast | ndex- 1] arein order anél t s[| ast | ndex]
is > all of them, so allokel t s[0. . | ast | ndex] is sorted.

Therefore by mathematical induction, this implementabba recursive selection sort is correct.
<

Complexity Proof for Recursive Selection Sort

Claim:recSel Sort (n-1, el ts) (i.e, the sort of am-element array) involves * (n — 1)/2
comparisons of elements of the array.

Proof: We proceed by mathematical induction on the sizeetthay to sort.
Base case: For = 1, we require 0 comparisons anc (n — 1)/2 = 0.

Inductive hypothesis: SupposecSel Sort (k- 1, el t s) requiresk x (k — 1)/2 comparisons
forall k < n.

Inductive step: Show thatecSel Sort (n-1, el ts) requiresn x (n — 1)/2 comparisons.

In the method) ast | ndex will be n — 1. Since our main loop will execute the comparison
| ast | ndex times, we will incurn — 1 comparisons.

Any additional comparisons will take place in the recursiath: r ecSel Sort (|l ast-1, el ts)
wherelast = n — 1.

But by our inductive hypothesis (sinéest < n), this takesastx (last—1)/2 = (n—1)*(n—2)/2
comparisons.

Therefore, we have atotal 6f — 1)+ (n—1)* (n—2)/2 = (n—1)%2/2+ (n—1)*(n—2)/2 =
m—1)*x(2+n—-2)/2=(n—-1)*xn/2=n(n—1)/2 comparisons.

By the principle of mathematical induction, we see that the@@anyn-element array will involve
n * (n — 1)/2 comparisonso

This matches with our previous statements thext Sel Sor t takesO(n?) comparisonse

Correctness of Recursive Merge Sort

It's easy to show thater geSor t Recur si ve is correct ifmer ge is correct, asrer ge is where
all the work takes place.

But ner ge is not recursive! It is easy toonvince yourself thatmer ge is correct, but a formal
proof of correctness of iterative algorithms is actually harti@ntfor recursive algorithms, and we

CS 211 Data Structures Fall 2009

will not prove this here.

Complexity of Recursive Merge Sort

It is straightforward to see that if the portion of the arrayar consideration hdselements (i.e.,
k = high — low + 1), then the complexity ofrer ge is O(k):

¢ If we only look at comparisons, then it's clear that every pamison in the f statement in
thewhi | e loop results in an element being copied intat a.

¢ In the worst case, you run out of all elements in one run wheretfs only 1 element left in
the other runk — 1 comparisons, giving) (k)

¢ If we count copies of elements, then it's alSgk) sinceg copies are made in copying half
of dat a into t enp, and then anywhere fro@ to k£ more copies in putting elements back
(in order) intodat a.

We will prove the complexity by induction.

Claim: The complexity ofrer geSor t Recur si ve, as measured by the number of comparisons,
is O(nlogn) for sort ofn elements.

It's easiest to prove this if we assume that 2™ for somem. The general case can be extended
to 2™ by padding the array with very large values, so this is s@ffiti

We proceed by mathematical induction onto show that a sort of. = 2™ elements takes
nlogn = 2™ . m compares.

Base casem = 0, son = 1. No work is needed here, so the 0 needed compargss 0.

Inductive Hypothesis: Suppose our claim is truesfor- 1, that the sort takes 2! - (m — 1)
compares.

Inductive Step: We show that the claim is true for

nmer geSor t Recur si ve of n = 2™ elements proceeds by doingr geSor t Recur si ve of
two lists of size} = 2!, followed by a call ofrer ge on list of sizen = 2™.

Thereforepumcompares < 2™ s (m—1)+2" 1 (m—1)+2" = 2% (2™ 1% (m—1))+2™ =
2% (m— 1)+ 2™ = 2" % ((m — 1) + 1) = 2™ x m. Therefore by mathematical induction,
numcompares < 2™ xm = nlogn. ¢

Similar arguments can be made to show that the number of &t n log n).

Radix Sort

We can’t do better tha®(n log n) in the average case for a general-purpose sort with no assump
tions on the input data and original ordering.

10

CS 211 Data Structures Fall 2009

We can actually do a sort i(n) time if we take advantage of some knowledge of the input array
We will not discuss it in class at this point, but the text ddses one such approach, thaglix sort.

11

