
Computer Science 211
Data Structures
Mount Holyoke College
Fall 2009

Topic Notes: Recursion and Mathematical Induction

Recursion
An important tool when trying to solve a problem is the ability to break the problem down into
some number of smaller sub-problems, the solutions to whichyou can use to solve the original
problem.

Oftentimes, those sub-problems look a lot like the originalproblem. In fact, they might be the
same problem, just on a smaller set of input data.

These kinds of problems often have aself-referential or recursive solution.

It’s a strange idea at first – calling the method you’re writing before you’re done writing it. Well,
if my method needs to call my method to finish up, how am I ever going to get anywhere?

Many algorithms may be recursive. Once you are used to them, they can be easier to understand
(and prove correct) than iterative algorithms.

Even if you’re fairly comfortable with recursion, I expect that few of you have formally proven
properties about recursive algorithms before. We will be doing some of that soon.

We start with a simple and classically recursive example: computing a factorial.

n! = n · (n − 1) · ... · 1

We could write a simple method to compute this with a for or while loop. But it is just begging to
be solved recursively.

n! is nothing more thann · (n − 1)!. So to compute it, all we do is compute(n − 1)! (which is
certainly easier than computingn!) and then multiply byn and we have the answer.

public static int factorial(int n) {

return n*factorial(n-1);
}

That’s great. We were writing a method to compute factorialsanyway, so why not call it? Assum-
ing we know how to compute(n − 1)!, we now can computen!.

Problem: what about 2?2! = 2 ∗ (1!) = 2 ∗ 1 ∗ (0!) = 2 ∗ 1 ∗ 0 ∗ (−1!)... That won’t work. We
need to stop the recursion somehow.

We need abase case. Well, 1!=1, so let’s stop our factorial when it gets to 1:



CS 211 Data Structures Fall 2009

public static int factorial(int n) {

if (n == 1) return 1;
return n*factorial(n-1);

}

The keys to a successful recursive solution: identify the base case and make sure the recursive step
is makingprogress toward the solution (closer to the base case).

Pros and Cons of Recursion

• Disadvantages

– Any recursive program requires additional (implicit) storage on the run-time stack.

– There is also a slight run-time overhead in the procedure calls since the system must
push activation records onto the stack.

– Execution is often slightly faster and will use less space ifit can be done iteratively.

• Advantages

– Often it is easier to construct a recursive solution.

– The resulting code may be significantly more clear.

– Smart compilers (particularly for functional languages) will remove “tail” recursion
automatically.

For our purposes, we will often begin with a recursive approach where appropriate. However, we
do want to keep in mind the extra costs associated with this approach. In cases where efficiency
is important, we may wish to eliminate or at least limit recursion. The good news: it’s always
possible to eliminate recursion. The bad news: it often complicates the code.

Example: Making Change in Postage Stamps

Consider the example from the text: making change in postage stamps.

This is more interesting than making change with U.S. currency. A greedy approach works well
with currency. We will always use the largest denomination that is less than or equal in value to the
amount we still need to account for. With postage stamps, if we want to receive our change using
the fewest number of stamps, it’s not that easy.

As of September 2009, the “useful” stamps in which to receivechange would be 44 cent letter and
28 cent postcard, with any smaller amounts made up in 1 cent penny stamps. Thus, the greedy
approach fails. For example, if we were to require 57 cents inchange, the greedy approach would
result in 1 letter stamp and 13 penny stamps, for a total of 14 stamps, while a far better solution
would consist of 2 postcard and 1 penny stamp, for a total of 3.

2



CS 211 Data Structures Fall 2009

Here is a straightforward solution:

See Text Example:
/home/jteresco/shared/cs211/eg/structure5/RecursivePostage.java

This works, but it is pretty inefficient. The problem is that lots of subproblems are solved over and
over each time the result is needed. The complexity of this solution is exponential (O(3n)), so we
would like to be able to do better to solve large instances of the problem in a reasonable amount of
effort.

We can improve upon this by trading some space to save time. Ifwe cache (remember) the results
of the subproblems we compute along the way and reuse them when possible, we can greatly
reduce the number of recursive calls. This is adynamic programming approach, and will result in
a linear (O(n)) running time, at the expense of linear space.

Mathematical Induction
One of our goals in our study of data structures and algorithms will be to prove (formally) the
correctness and/or complexity of the structures and algorithms.

We will make use of a proof technique calledmathematical induction.

Formally, theprinciple of mathematical induction can be stated:

Let A be a set of natural numbers such that

1. 0 is an element ofA, and

2. for eachn, if 0, 1, ..., n in A, then(n + 1) is also inA. ThenA is the set of natural numbers.

We use this to prove statements of the form:

For all natural numbersn, P is true.

A proof by mathematical induction typically follows a 5-step template.

1. State your intend to use induction: “We proceed using mathematical induction on the size of
the problem” or some similar statement.

2. Prove thebase case or base cases. This is often very straightforward and involves a trivial or
at least simple case or cases.

3. State your the assumption that the statement you are attempting to prove holds for all values
from the base case up to but not including thenth case. This is yourinductive hypothesis.
(You may only need to assume then − 1st in many cases, so do that if possible.)

4. Prove, using the assumption that the simpler cases hold, that thenth case holds. This is the
inductive step.

3



CS 211 Data Structures Fall 2009

5. Claim that the statement is true for alln by mathematical induction.

A Simple Example

For example, we can prove by induction that
∑

n

i=0 i = n(n+1)
2

Proof: We proceed by mathematical induction onn.

Our base case isn = 0. The formula in this case yields0(0+1)
2

= 0, which is correct.

Now, we assume that the formula is correct for all values between0 andn − 1.

Forn, the sum on the left-hand side may be written:

0 + 1 + 2 + ...(n − 1) + n

we can rewrite this

[0 + 1 + 2 + ...(n − 1)] + n

The part in brackets is, by our inductive hypothesis,(n−1)n
2

. Substituting this into our expression
above yields:

[

(n − 1)n

2

]

+ n

We can simplify this:

(n − 1)n

2
+

2n

2
=

(n − 1)n + 2n

2
=

n(n + 1)

2

Therefore by mathematical induction, we have shown that theformula holds for alln. ⋄

Another Example

Prove that

03 + 13 + 23 + ... + n3 = (0 + 1 + 2 + ... + n)2

Proof: We proceed by mathematical induction onn.

Base:n = 0. 03 = 0 = (0)2 [Done.]

Inductive hypothesis: Assume that our formula holds for values up ton − 1.

Inductive step: We show, using this assumption, that the formula holds forn.

4



CS 211 Data Structures Fall 2009

03 + 13 + 23 + ... + n3 = 03 + 13 + 23 + ... + (n − 1)3 + n3

= (0 + 1 + 2 + ... + (n − 1))2 + n3

=
(

n(n−1)
2

)2

+ n3

=
(

n
2
−n

2

)2

+ n3

= n
4
−2n

3+n
2

4
+ 4n

3

4

= n
4+2n

3+n
2

4

= (n2+n)2

4

=
(

n(n+1)
2

)2

= (0 + 1 + 2 + ... + n)2

(1)

By mathematical induction, this formula holds for alln. ⋄

A Bad Proof

We do need to be careful with mathematical induction, however. Consider the following “proof”.

Prove: All cows are the same color.

Proof: Proceed by mathematical induction.

Base case: consider a group of one cow. Clearly, all cows in the base case are the same color.

Inductive hypothesis: Suppose that for any group of fewer thann cows, they are all the same color.

Inductive step: Prove that a group ofn cows is all of the same color. So let’s take out one cow
from the group ofn. Our induction hypothesis states that the remaining group of n−1 cows are all
of the same color. Put that cow back and take out a different cow, leaving another group ofn − 1
horses, which, by our inductive hypothesis, are all the samecolor. Therefore, the entire group ofn

is of the same color.

Why does this fail? It’s the two-horse case that’s the problem. There are no horses in common in
the “other” group, so we can’t say anything about the horses being the same color.

For another example of a bad “proof”, see also the proof that all Canadians are the same age, linked
from the lecture.

Proving algorithm correctness and time complexity will come later.

5


