Computer Science 211
M C Data Structures

——__ Mount Holyoke College
MOUNT HOLYOKE COLLEGE Fa” 2009

Topic Notes: Maps and Hashing

Maps/Dictionaries
A map or dictionary is a structure used for looking up items via key-value asgmsis.

We have seen this idea several times so far:

e Way back at the beginning of the semester, when we used artieyi ofHarry Potter spells.
¢ We stored symbol tables in maps for the postscript lab.

e \We stored our vertices in maps in the graph implementatiangist looked at.

Both Java and the structure package define an interface dd#lpthat we can use for this.

See Structure Source:
/homeljteresco/shared/cs211/src/structure5/Map.java

This interface include the kinds of things we are used taggeiour structures, so we won't spend
too much time looking at it.

There are a lot of implementations oMaap possible.
We can use a linked list dfssociation s.

See Structure Source:
/homeljteresco/shared/cs211/src/structure5/MapList.java

We can use MapList to simplify theSpells example.

See Example:
/home/jteresco/shared/cs211/examples/Spells/SpellsMapList.java

This provides a convenient implementation, but doesn’rowe efficiency over our previous meth-
ods.

If our keys are comparable, we might keep our map contentsdstor more efficient lookups with
a sorted array, or a binary search tree.

See Structure Source:
/homel/jteresco/shared/cs211/src/structure5/Table.java

In fact, there are many possible implementations of mapswelfthink abstractly about a few
variants, we can consider their time complexity on commoarttpns and space complexity. In
the table belowp denotes the actual number of elements in the map \adénote the maximum
number of elements it could contain (where that restricti@kes sense).

CS 211 Data Structures Fall 2009

Structure Search Insert Delete Space
Linked List O(n) 0(1) O(n) O(n)
Sorted Array O(logn) O(n) O(n) O(N)
Balanced BST O(logn) O(logn) O(logn) O(n)

Array[KeyRange] ofEltType o(1) 0(1) O(1) KeyRange

That last line is very interesting. If we know the range ofkéyuppose they're all integers between
0 and KeyRange-1) we can use the key as the index directly mé&wray. And have constant time
access!

Hashing

The map implementation of an array with keys as the subsaipd values as contents makes a lot
of sense. However, there are some important restrictiotBeunse of this representation.

This implementation assumes that the data has a key whitha iestricted type (some enumerated
type in Pascal, integers in Java), which is not always the.dahat if we're trying to store strings
or doubles or something more complex?

Moreover, the size requirements for this implementatianabde prohibitive. Suppose we wanted
to store 2000 student records indexed by social securitypeumVe would need an array with 1
billion elements!

In cases like this, where most of the entries will be emptyywweald like to use a smaller array, but
come up with a good way to map our elements into the arrayesntri

Suppose we have a lot of data elements of tg@nd a set of indices in which we can store data
elements. We would like to obtain a functiéft E — index, which has the properties:

1. H(elt) can be computed quickly

2. If eltl # elt2 thenH (eltl) # H(elt2). (i.e., H is a one-to-one function)

This is called gerfect hashing function. Unfortunately, they are difficult to find unless you know
all possible entries to the table in advance. This is ratedycase.

Instead we use something that behaves well, but not nedggsafectly.

The goal is to scatter elements through the array randomilyagdhey won’t attempt to be stored
in the same location, or “bump into” each other.

So we will define ghash function H: Keys — Addresses (or array indices), and we will call
H(element.key) the home address of element .

Assuming no two distinct elements wind up mapping to the daceion, we can now add, search
for, and remove them i®(1) time.

The one thing we can no longer do efficiently that we could ltiree with some of the other maps
is to list them in order.

CS 211 Data Structures Fall 2009

Since the function is not guaranteed to be one-to-one, wi gaarantee that no two distinct
elements map to the same home address.

This suggests two problems to consider:

1. How to choose a good hashing function?

2. How to resolve the situation where two different elemanésmapped to same home address?

Selecting Hashing Functions
The following quote should be memorized by anyone tryingdsigin a hashing function:

“A given hash function must always be tried on real data ireotd find out whether it is effective
or not.”

Data which contains unexpected and unfortunate reg@aictin completely destroy the usefulness
of any hashing function!

We will start by considering hashing functions for integaitied keys.

Digit selection As the name suggests, this involved choosing digits frortagepositions of key
(e.g. last 3 digits of a SSN).

Unfortunately it is easy to make a very unfortunate choice.Wg@uld need careful analysis
of the expected keys to see which digits will work best. Lykehtterns can cause problems.
We want to make sure that the expected keys are at least eapfadpenerating all possible

table positions.

For example the first digits of SSN’s reflect the region in \iahiley were assigned and hence
usually would work poorly as a hashing function.

Division Here, we leH(key) = key mod TableSize
This is very efficient and often gives good results if frableSize is chosen properly.

Ifitis chosen poorly then you can get very poor results. Giderdine case whefableSize

= 2% = 256 and the keys are computed from ASCII equivalent of two leti@rsp i.e.
Key(xy) = 28 - ASCII(x) + ASCII(y), then all pairs ending with the same letter get
mapped to same address. Similar problems arise with anyrpuiZe

It is usually safest to choose tfi@bleSize to be a prime number in the range of your
desired table size. The default size in structure’s hadk tal®97.

Mid-Square Here, the approach is to square the key and then select a siltise bits from the
result. Often, bits from the middle part of the square aremak he mixing provided by the
multiplication ensures that all digits are used in the cotapon of the hash code.

Example: Let the keys range between 1 and 32000 and |&tahkeSize be2048 = 21!,

Square the key and select 11 bits from the middle of the reNole that such bit manipula-
tions can be done very efficiently using shifting and bitwasel operations.

3

CS 211 Data Structures Fall 2009

H(Key) = (key >> 10) & OxO8FF;

Will pull out the bits:

Key = 123456789abcdefghijkimnopgrstuvw
Key >> 10 = 0000000000123456789abcdefghijkim
& Ox08FF = 000000000000000000000cdefghijkim

Usingr bits produces a table of si2&.

Folding Here, we break the key into chunks of digits (sometimes savgralternating chunks)
and add them up.

This is often used if the key is too big. Suppose the keys aceaS8ecurity numbers, which
are 9 digits numbers. We can break it up into three piecebapsrthe 1st digit, the next 4,
and then the last 4. Then add them together.

This technique is often used in conjunction with other mdthe one might do a folding
step, followed by division.

What if the key is a String?

We can use a formula like Key(zy) = 28 - (int)x + (int)y to convert from alphabetic keys to
ASCII equivalents. (Use! for Unicode.) This is often used in combination with foldi¢fgr the
rest of the string) and division.

Here is a very simple-minded hash code for strings: Add twgethe ordinal equivalent of all
letters and take the remainder mbableSize

However, this has a potential problem: words with samerketiet mapped to same places:
miles, slime, smile
This would be much improved if you took the letters in pairfobe division.

Here is a function which adds up the ASCII codes of letters aed takes the remainder when
divided byTableSize

hash = 0O;
for (int charNo = 0; charNo < word.length(); charNo++)
hash = hash + (int)(word.charAt(CharNo));
hash = hash % tableSize; / * gives 0 <= hash < tableSize */

This is not going to be a very good hash function, but it's astesimple.

All Java objects come equipped witthashCode method (we’ll ook at this soon). THeashCode
for JavaString s is defined as specified in its Javadoc:

s[0] *31°(n-1) + s[1] *31°(n-2) + ... + s[n-1]

4

CS 211 Data Structures Fall 2009

usingint arithmetic, wheres[i] is thei'" character of the string; is the length of the string,
and” indicates exponentiation. (The hash value of the emptygsts zero.)

See Example:
/homeljteresco/shared/cs211/examples/HashCodes

Handling Collisions
The home address of a key is the location that the hash funitarns for that key.
A hash collision occurs when two different keys have the same home location.

There are two main options for getting out of trouble:

1. Open addressing: if the desired slot is full, do something to find an open skdtis must be
done in such a way that one can find the element again quickly!

2. External chaining: make each slot capable of holding multiple items and stbrebgects
that with the same home address in their desired slot.

For our discussion, we will assume our hash table consisis afrray ofTableSize entries of
the appropriate type:

Object [] table = new Object[TableSize];

Open Addressing

Here, we find the home address of the key (using the hash &mcif it happens to be occupied,
we keep trying new slots until an empty slot is located.

There will be three types of entries in the table:

e an empty slot, represented bull

e deleted entries - marked by inserting a special “reserv@ecththe need for this will soon
become obvious), and

e normal entries which contain a reference to an object in #sh hable.

This approach requiresrahashing. There are many ways to do this — we will consider a few.

First, Linear rehashing. We simply look for the next available slot in the array beyahe home
address. If we get to the end, we wrap around to the beginning:

Rehash(i) = (i + 1) \% TableSize.

CS 211 Data Structures Fall 2009

This is about as simple as possible. Successive rehashlingyremtually try every slot in the table
for an empty slot.

For example, consider a simple hash table of strings, whabdeSize = 26 , and we choose
a (poor) hash function:

H(key) = the alphabetic position (zero-based) of the first charactére string.
Strings to be input ar€A D, A, G A2, A1, A3,A4,Z, ZA E
Here’s what happens with linear rehashing:

0 1 2 3 4 5 6 7 8 9 10 25
A A2 Al D A3 A4 GA G ZA E - V4

In this example, we see the potential problem with an openeadthg approach in the presence of
collisions: clustering.

Primary clustering occurs when more than one key has the same home address.sHrtigere-
hashing scheme is used for all keys with the same home adtiersany new key will collide with
all earlier keys with the same home address when the relgasbireme is employed.

In the example, this happened withA2, Al, A3, andA4.

Secondary clustering occurs when a key has a home address which is occupied by merdle
which originally got hashed todifferent home address, but in rehashing got moved to the address
which is the same as the home address of the new element.

In the example, this happened wHh
When we search foA3, we need to look in 0,1,2,3,4.

What if we search foAB? When do we know we will not find it? We have to continue our dearc
to the first empty slot! This is not until position 10!

Now let’s deleteA2 and then search fak1. If we just put anull in slot 1, we would not findA1
before encountering thaull in slot 1.

So we must mark deletions (not just make them empty). Theds san be reused on a new
insertion, but we cannot stop a search when we see a slot chaskdeleted. This can be pretty
complicated.

Minor variants of linear rehashing would include adding anynberk (which is relatively prime
to TableSize), rather than adding 1.

If the numberk is divisible by any factor ofTableSize (i.e., k£ is not relatively prime to
TableSize), then not all entries of the table will be explored when s#tiag. For instance,
if TableSize = 100 andk = 50, the linear rehashing function will only explore twotsloo
matter how many times it is applied to a starting location.

Often the use ok = 1 works as well as any other choice.

Next, we considequadratic rehashing.

CS 211 Data Structures Fall 2009

Here, we try slothome + j2?) % TableSize on thej* rehash.
This variant can help with secondary clustering but not printlustering.
It can also result in instances where in rehashing you dondlt possible slots in table.

For example, suppose tiA@bleSize is 5, with slots 0 to 4. If the home address of an element
is 1, then successive rehashings resultin 2, 0, 0, 2, 1, 2,.Q, The slots 3 and 4 will never be
examined to see if they have room. This is clearly a disa@wggmnt

Our last option for rehashing is calleiduble hashing.

Rather than computing a uniform jump size for successivesteds® we make it depend on the key
by using adifferent hashing function to calculate the rehash.

For example, we might compute
delta(Key) = Key % (TableSize -2) + 1

and add this delta for successive rehash attempts.
If the TableSize is chosen well, this should alleviate both primary and sdaonclustering.

For example, suppose tA@ableSize is5, andH(n) = n % 5. We calculate delta as above.
SowhileH(1) = H(6) = H(11) = 1 ,thejump sizes for the rehash differ sirdadta(1)
= 2,delta(6) = 1 ,anddelta(1l) = 3

External Chaining

We can eliminate some of our troubles entirely by allowingreslot in the hash table hold as many
items as necessary.

The easiest way to do this is to let each slot be the head okedilist of elements.

The simplest way to represent this is to allocate a table asray of references, with each non-
null entry referring to a linked list of elements which got mappethat slot.

We can organize these lists as ordered, singly or doublgdin&ircular, etc.
We can even let them be binary search trees if we want.

Of course with good hashing functions, the size of lists &hbe short enough so that there is no
need for fancy representations (though one may wish to helchtas ordered lists).

There are some advantages to this over open addressing:

1. The “deletion problem” doesn't arise.
2. The number of elements stored in the table can be largetthigetable size.

3. Itavoids all problems of secondary clustering (thoughmpry clustering can still be a prob-
lem — resulting in long lists in some buckets).

7

CS 211 Data Structures Fall 2009

Analysis

We can measure the performance of various hashing schertesegpect to théoad factor of the
table.

The load factorq, of a table is defined as the ratio of the number of elementedia the table to
the size of the table.

a = 1 means the table is fuly = 0 means it is empty.
Larger values ofv lead to more collisions.
(Note that with external chaining, it is possible to havgha > 1).

The Table 15.11 in the text summarizes the performance ofallision resolution techniques in
searching for an element. The value in each slot repredemi@vierage number of compares nec-
essary for a search. The first column represents the numlsengsares if the search is ultimately
unsuccessful, while the second represents the case whearthis found:

The main point to note is that the time for linear rehashingsgaop dramatically as approaches
1.

Double hashing is similar, but not so bad, whereas extetrahing does not increase very rapidly
at all (linearly).

In particular, ifa = .9, we get:

Strategy Unsuccessful Successful
Linear rehashing 55 11/2
Double hashing 10 4
External hashing 3 1.45

The differences become greater with heavier loading.
The space requirements (in words of memory) are roughly d@ngesfor both techniques. If we
haven items stored in a table allocated witlableSize entries:

e open addressingfableSize + n- objectsize

e external chainingTableSize + n- (objectsize + 1)
With external chaining we can get away with a smallableSize , since it responds better to
the resulting higher load factor.

A general rule of thumb might be to use open addressing whdrawea small number of elements
and expect a low load factor. We have have a larger numbeenfasits, external chaining can be
more appropriate.

Hashtable | mplementations

CS 211 Data Structures Fall 2009

Hashing is a central enough idea thaliject sin Java come equipped with a meth@shCode
that will compute a hash function. Likexjuals , this is required byObject . We can override it
if we know how we want to have our specific types of objects kkeha

Java includes hash tablesjava.util.Hashtable

It uses external chaining, with the buckets implementedla®ar structure. It allows two param-
eters to be set through arguments to the constructor:

e initialCapacity - how big is the array of buckets

e |loadFactor - how full can the table get before it automatically grows

Suppose an insertion causes the hash table to exceed ifattad What does the resize operation
entail? Every item in the hash table must be rehashed! If asiyall number of buckets get used,
this could be a problem. We could be resizing when most backet still empty. Moreover, the
resize and rehash may or may not help. In fact, shrinkingdb&tmight be just as effective as
growing it in some circumstances.

Next, we will consider the hash table implementations incdtire.

See Structure Sour ce:
/home/jteresco/shared/cs211/src/structure5/Hashtable.java

Interesting features:

Implementation of open addressing with default size 997.

e The load factor threshold for a rehashing is fixed at 0.6. Bdow® this threshold will result
in the table being doubled in size and all entries being fedths

e There is a specidRESERVELRntry to make sure we can still locate values after we have
removed items that caused clustering.

e The protectedocate method finds the entry where a given key is stored in the table o
an empty slot where it should be stored if it is to be added.eNoat we need to search
beyond the firsRESERVEDocation because we’re not sure yet if we might still find the
actual value. But we do want to use the first reserved value wes@cross to minimize
search distance for this key later.

e Now get andput become simple — most of the work is dondacate

See Structure Source:
/homeljteresco/shared/cs211/src/structure5/ChainedHashtable.java

Interesting features:

¢ Implementation of external chaining, default size 997.

9

CS 211 Data Structures Fall 2009

e We create an array of buckets that hdlgst s of Association s. SinglyLinkedList S
are used.

e Lists are allocated when we try to locate the bucket for a kegn if we're not inserting.
This allows other operations to degenerate into list opmrat
For example, to check if a key is in the table, we locate itkbtiand use the listsontains
method.

e We add an entry with thput method.

we locate the correct bucket

we create a newssociation to hold the new item
we remove the item (!) from the bucket

we add the item to the bucket (why?)

if we actually removed a value we return the old one

o gk wh R

otherwise, we increase the count and returlh

e Theget method is also in a sense destructive. Rather than just Igakinthe value, we
remove and reinsert the key if it's found.

e This reinsertion for put and get means that we will move tHaesawe are using to the front
of their bucket. Helpful?

10

