
Computer Science 211
Data Structures
Mount Holyoke College
Fall 2009

Topic Notes: Maps and Hashing

Maps/Dictionaries
A map or dictionary is a structure used for looking up items via key-value associations.

We have seen this idea several times so far:

• Way back at the beginning of the semester, when we used a dictionary ofHarry Potter spells.

• We stored symbol tables in maps for the postscript lab.

• We stored our vertices in maps in the graph implementations we just looked at.

Both Java and the structure package define an interface calledMap that we can use for this.

See Structure Source:
/home/jteresco/shared/cs211/src/structure5/Map.java

This interface include the kinds of things we are used to seeing in our structures, so we won’t spend
too much time looking at it.

There are a lot of implementations of aMappossible.

We can use a linked list ofAssociation s.

See Structure Source:
/home/jteresco/shared/cs211/src/structure5/MapList.java

We can use aMapList to simplify theSpells example.

See Example:
/home/jteresco/shared/cs211/examples/Spells/SpellsMapList.java

This provides a convenient implementation, but doesn’t improve efficiency over our previous meth-
ods.

If our keys are comparable, we might keep our map contents sorted for more efficient lookups with
a sorted array, or a binary search tree.

See Structure Source:
/home/jteresco/shared/cs211/src/structure5/Table.java

In fact, there are many possible implementations of maps. Ifwe think abstractly about a few
variants, we can consider their time complexity on common opertions and space complexity. In
the table below,n denotes the actual number of elements in the map, andN denote the maximum
number of elements it could contain (where that restrictionmakes sense).

CS 211 Data Structures Fall 2009

Structure Search Insert Delete Space
Linked List O(n) O(1) O(n) O(n)
Sorted Array O(log n) O(n) O(n) O(N)
Balanced BST O(log n) O(log n) O(log n) O(n)
Array[KeyRange] ofEltType O(1) O(1) O(1) KeyRange

That last line is very interesting. If we know the range of keys (suppose they’re all integers between
0 and KeyRange-1) we can use the key as the index directly into an array. And have constant time
access!

Hashing
The map implementation of an array with keys as the subscripts and values as contents makes a lot
of sense. However, there are some important restrictions onthe use of this representation.

This implementation assumes that the data has a key which is of a restricted type (some enumerated
type in Pascal, integers in Java), which is not always the case. What if we’re trying to store strings
or doubles or something more complex?

Moreover, the size requirements for this implementation could be prohibitive. Suppose we wanted
to store 2000 student records indexed by social security number. We would need an array with 1
billion elements!

In cases like this, where most of the entries will be empty, wewould like to use a smaller array, but
come up with a good way to map our elements into the array entries.

Suppose we have a lot of data elements of typeE and a set of indices in which we can store data
elements. We would like to obtain a functionH: E→ index, which has the properties:

1. H(elt) can be computed quickly

2. If elt1 6= elt2 thenH(elt1) 6= H(elt2). (i.e.,H is a one-to-one function)

This is called aperfect hashing function. Unfortunately, they are difficult to find unless you know
all possible entries to the table in advance. This is rarely the case.

Instead we use something that behaves well, but not necessarily perfectly.

The goal is to scatter elements through the array randomly sothat they won’t attempt to be stored
in the same location, or “bump into” each other.

So we will define ahash function H: Keys → Addresses (or array indices), and we will call
H(element.key) thehome address of element .

Assuming no two distinct elements wind up mapping to the samelocation, we can now add, search
for, and remove them inO(1) time.

The one thing we can no longer do efficiently that we could havedone with some of the other maps
is to list them in order.

2

CS 211 Data Structures Fall 2009

Since the function is not guaranteed to be one-to-one, we can’t guarantee that no two distinct
elements map to the same home address.

This suggests two problems to consider:

1. How to choose a good hashing function?

2. How to resolve the situation where two different elementsare mapped to same home address?

Selecting Hashing Functions

The following quote should be memorized by anyone trying to design a hashing function:

“A given hash function must always be tried on real data in order to find out whether it is effective
or not.”

Data which contains unexpected and unfortunate regularities can completely destroy the usefulness
of any hashing function!

We will start by considering hashing functions for integer-valued keys.

Digit selection As the name suggests, this involved choosing digits from certain positions of key
(e.g. last 3 digits of a SSN).

Unfortunately it is easy to make a very unfortunate choice. We would need careful analysis
of the expected keys to see which digits will work best. Likely patterns can cause problems.
We want to make sure that the expected keys are at least capable of generating all possible
table positions.

For example the first digits of SSN’s reflect the region in which they were assigned and hence
usually would work poorly as a hashing function.

Division Here, we letH(key) = key mod TableSize

This is very efficient and often gives good results if theTableSize is chosen properly.

If it is chosen poorly then you can get very poor results. Consider the case whereTableSize
= 28 = 256 and the keys are computed from ASCII equivalent of two letter pairs, i.e.
Key(xy) = 28 · ASCII(x) + ASCII(y), then all pairs ending with the same letter get
mapped to same address. Similar problems arise with any power of 2.

It is usually safest to choose theTableSize to be a prime number in the range of your
desired table size. The default size in structure’s hash table is 997.

Mid-Square Here, the approach is to square the key and then select a subset of the bits from the
result. Often, bits from the middle part of the square are taken. The mixing provided by the
multiplication ensures that all digits are used in the computation of the hash code.

Example: Let the keys range between 1 and 32000 and let theTableSize be2048 = 211.

Square the key and select 11 bits from the middle of the result. Note that such bit manipula-
tions can be done very efficiently using shifting and bitwiseand operations.

3

CS 211 Data Structures Fall 2009

H(Key) = (key >> 10) & 0x08FF;

Will pull out the bits:

Key = 123456789abcdefghijklmnopqrstuvw
Key >> 10 = 0000000000123456789abcdefghijklm
& 0x08FF = 000000000000000000000cdefghijklm

Usingr bits produces a table of size2r.

Folding Here, we break the key into chunks of digits (sometimes reversing alternating chunks)
and add them up.

This is often used if the key is too big. Suppose the keys are Social Security numbers, which
are 9 digits numbers. We can break it up into three pieces, perhaps the 1st digit, the next 4,
and then the last 4. Then add them together.

This technique is often used in conjunction with other methods – one might do a folding
step, followed by division.

What if the key is a String?

We can use a formula like -Key(xy) = 28 · (int)x + (int)y to convert from alphabetic keys to
ASCII equivalents. (Use216 for Unicode.) This is often used in combination with folding(for the
rest of the string) and division.

Here is a very simple-minded hash code for strings: Add together the ordinal equivalent of all
letters and take the remainder modTableSize .

However, this has a potential problem: words with same letters get mapped to same places:

miles, slime, smile

This would be much improved if you took the letters in pairs before division.

Here is a function which adds up the ASCII codes of letters and then takes the remainder when
divided byTableSize :

hash = 0;
for (int charNo = 0; charNo < word.length(); charNo++)

hash = hash + (int)(word.charAt(CharNo));
hash = hash % tableSize; / * gives 0 <= hash < tableSize * /

This is not going to be a very good hash function, but it’s at least simple.

All Java objects come equipped with ahashCode method (we’ll look at this soon). ThehashCode
for JavaString s is defined as specified in its Javadoc:

s[0] * 31ˆ(n-1) + s[1] * 31ˆ(n-2) + ... + s[n-1]

4

CS 211 Data Structures Fall 2009

using int arithmetic, wheres[i] is theith character of the string,n is the length of the string,
andˆ indicates exponentiation. (The hash value of the empty string is zero.)

See Example:
/home/jteresco/shared/cs211/examples/HashCodes

Handling Collisions
The home address of a key is the location that the hash function returns for that key.

A hash collision occurs when two different keys have the same home location.

There are two main options for getting out of trouble:

1. Open addressing: if the desired slot is full, do something to find an open slot.This must be
done in such a way that one can find the element again quickly!

2. External chaining: make each slot capable of holding multiple items and store all objects
that with the same home address in their desired slot.

For our discussion, we will assume our hash table consists ofan array ofTableSize entries of
the appropriate type:

Object [] table = new Object[TableSize];

Open Addressing

Here, we find the home address of the key (using the hash function). If it happens to be occupied,
we keep trying new slots until an empty slot is located.

There will be three types of entries in the table:

• an empty slot, represented bynull

• deleted entries - marked by inserting a special “reserved object” (the need for this will soon
become obvious), and

• normal entries which contain a reference to an object in the hash table.

This approach requires arehashing. There are many ways to do this – we will consider a few.

First, Linear rehashing. We simply look for the next available slot in the array beyond the home
address. If we get to the end, we wrap around to the beginning:

Rehash(i) = (i + 1) \% TableSize.

5

CS 211 Data Structures Fall 2009

This is about as simple as possible. Successive rehashing will eventually try every slot in the table
for an empty slot.

For example, consider a simple hash table of strings, whereTableSize = 26 , and we choose
a (poor) hash function:

H(key) = the alphabetic position (zero-based) of the first characterin the string.

Strings to be input areGA, D, A, G, A2, A1, A3, A4, Z, ZA, E

Here’s what happens with linear rehashing:

0 1 2 3 4 5 6 7 8 9 10 ... 25
A A2 A1 D A3 A4 GA G ZA E Z

In this example, we see the potential problem with an open addressing approach in the presence of
collisions:clustering.

Primary clustering occurs when more than one key has the same home address. If thesame re-
hashing scheme is used for all keys with the same home addressthen any new key will collide with
all earlier keys with the same home address when the rehashing scheme is employed.

In the example, this happened withA, A2, A1, A3, andA4.

Secondary clustering occurs when a key has a home address which is occupied by an element
which originally got hashed to adifferent home address, but in rehashing got moved to the address
which is the same as the home address of the new element.

In the example, this happened withE.

When we search forA3, we need to look in 0,1,2,3,4.

What if we search forAB? When do we know we will not find it? We have to continue our search
to the first empty slot! This is not until position 10!

Now let’s deleteA2 and then search forA1. If we just put anull in slot 1, we would not findA1
before encountering thenull in slot 1.

So we must mark deletions (not just make them empty). These slots can be reused on a new
insertion, but we cannot stop a search when we see a slot marked as deleted. This can be pretty
complicated.

Minor variants of linear rehashing would include adding anynumberk (which is relatively prime
to TableSize), rather than adding 1.

If the numberk is divisible by any factor ofTableSize (i.e., k is not relatively prime to
TableSize), then not all entries of the table will be explored when rehashing. For instance,
if TableSize = 100 andk = 50, the linear rehashing function will only explore two slots no
matter how many times it is applied to a starting location.

Often the use ofk = 1 works as well as any other choice.

Next, we considerquadratic rehashing.

6

CS 211 Data Structures Fall 2009

Here, we try slot(home + j2) % TableSize on thejth rehash.

This variant can help with secondary clustering but not primary clustering.

It can also result in instances where in rehashing you don’t try all possible slots in table.

For example, suppose theTableSize is 5, with slots 0 to 4. If the home address of an element
is 1, then successive rehashings result in 2, 0, 0, 2, 1, 2, 0, 0, ... The slots 3 and 4 will never be
examined to see if they have room. This is clearly a disadvantage.

Our last option for rehashing is calleddouble hashing.

Rather than computing a uniform jump size for successive rehashes, we make it depend on the key
by using adifferent hashing function to calculate the rehash.

For example, we might compute

delta(Key) = Key % (TableSize -2) + 1

and add this delta for successive rehash attempts.

If the TableSize is chosen well, this should alleviate both primary and secondary clustering.

For example, suppose theTableSize is 5, andH(n) = n % 5 . We calculate delta as above.
So whileH(1) = H(6) = H(11) = 1 , the jump sizes for the rehash differ sincedelta(1)
= 2, delta(6) = 1 , anddelta(11) = 3 .

External Chaining

We can eliminate some of our troubles entirely by allowing each slot in the hash table hold as many
items as necessary.

The easiest way to do this is to let each slot be the head of a linked list of elements.

The simplest way to represent this is to allocate a table as anarray of references, with each non-
null entry referring to a linked list of elements which got mappedto that slot.

We can organize these lists as ordered, singly or doubly linked, circular, etc.

We can even let them be binary search trees if we want.

Of course with good hashing functions, the size of lists should be short enough so that there is no
need for fancy representations (though one may wish to hold them as ordered lists).

There are some advantages to this over open addressing:

1. The “deletion problem” doesn’t arise.

2. The number of elements stored in the table can be larger than the table size.

3. It avoids all problems of secondary clustering (though primary clustering can still be a prob-
lem – resulting in long lists in some buckets).

7

CS 211 Data Structures Fall 2009

Analysis
We can measure the performance of various hashing schemes with respect to theload factor of the
table.

The load factor,α, of a table is defined as the ratio of the number of elements stored in the table to
the size of the table.

α = 1 means the table is full,α = 0 means it is empty.

Larger values ofα lead to more collisions.

(Note that with external chaining, it is possible to havealpha > 1).

The Table 15.11 in the text summarizes the performance of ourcollision resolution techniques in
searching for an element. The value in each slot represents the average number of compares nec-
essary for a search. The first column represents the number ofcompares if the search is ultimately
unsuccessful, while the second represents the case when theitem is found:

The main point to note is that the time for linear rehashing goes up dramatically asα approaches
1.

Double hashing is similar, but not so bad, whereas external chaining does not increase very rapidly
at all (linearly).

In particular, ifα = .9, we get:

Strategy Unsuccessful Successful
Linear rehashing 55 11/2
Double hashing 10 4
External hashing 3 1.45

The differences become greater with heavier loading.

The space requirements (in words of memory) are roughly the same for both techniques. If we
haven items stored in a table allocated withTableSize entries:

• open addressing:TableSize + n· objectsize

• external chaining:TableSize + n· (objectsize + 1)

With external chaining we can get away with a smallerTableSize , since it responds better to
the resulting higher load factor.

A general rule of thumb might be to use open addressing when wehave a small number of elements
and expect a low load factor. We have have a larger number of elements, external chaining can be
more appropriate.

Hashtable Implementations

8

CS 211 Data Structures Fall 2009

Hashing is a central enough idea that allObject s in Java come equipped with a methodhashCode
that will compute a hash function. Likeequals , this is required byObject . We can override it
if we know how we want to have our specific types of objects behave.

Java includes hash tables injava.util.Hashtable .

It uses external chaining, with the buckets implemented as alinear structure. It allows two param-
eters to be set through arguments to the constructor:

• initialCapacity - how big is the array of buckets

• loadFactor - how full can the table get before it automatically grows

Suppose an insertion causes the hash table to exceed its loadfactor. What does the resize operation
entail? Every item in the hash table must be rehashed! If onlya small number of buckets get used,
this could be a problem. We could be resizing when most buckets are still empty. Moreover, the
resize and rehash may or may not help. In fact, shrinking the table might be just as effective as
growing it in some circumstances.

Next, we will consider the hash table implementations in structure.

See Structure Source:
/home/jteresco/shared/cs211/src/structure5/Hashtable.java

Interesting features:

• Implementation of open addressing with default size 997.

• The load factor threshold for a rehashing is fixed at 0.6. Exceeding this threshold will result
in the table being doubled in size and all entries being rehashed.

• There is a specialRESERVEDentry to make sure we can still locate values after we have
removed items that caused clustering.

• The protectedlocate method finds the entry where a given key is stored in the table or
an empty slot where it should be stored if it is to be added. Note that we need to search
beyond the firstRESERVEDlocation because we’re not sure yet if we might still find the
actual value. But we do want to use the first reserved value we come across to minimize
search distance for this key later.

• Now get andput become simple – most of the work is done inlocate .

See Structure Source:
/home/jteresco/shared/cs211/src/structure5/ChainedHashtable.java

Interesting features:

• Implementation of external chaining, default size 997.

9

CS 211 Data Structures Fall 2009

• We create an array of buckets that holdsList s ofAssociation s. SinglyLinkedList s
are used.

• Lists are allocated when we try to locate the bucket for a key,even if we’re not inserting.
This allows other operations to degenerate into list operations.

For example, to check if a key is in the table, we locate its bucket and use the list’scontains
method.

• We add an entry with theput method.

1. we locate the correct bucket

2. we create a newAssociation to hold the new item

3. we remove the item (!) from the bucket

4. we add the item to the bucket (why?)

5. if we actually removed a value we return the old one

6. otherwise, we increase the count and returnnull

• The get method is also in a sense destructive. Rather than just looking up the value, we
remove and reinsert the key if it’s found.

• This reinsertion for put and get means that we will move the values we are using to the front
of their bucket. Helpful?

10

