Computer Science 211
M[] C Data Structures
——_ Mount Holyoke College
MOUNT HOLYOKE COLLEGE Fa” 2009

Topic Notes: Linear Structures

The structures we've seen so f&ect or s and linked lists, allow insertion and deletion of ele-
ments from any position in the structure. So there is an ‘iGridethe structure, but that order does
not restrict how we access or modify the structure.

There may be significant differences in efficiency when modg or accessing the structure in a
way that is perfectly legal but may be hard to implement edfidy. Moreover, it may not be clear
to the user of a structure which operations are efficient amdwwill incur a significant cost.

Linear structuresare more restricted, allowing only a singdeld and singler enove method,
neither of which allows us to specify a position within theusture.

Why would we want to restrict our structures in such a way? Mesgrictions on a structure

generally allows for more efficientimplementation of itpported operations. Since we know how
it will be used (and in fact enforce this by limiting the numioé public methods), we can make
sure we use an appropriate internal representation to@effigiency of the supported operations.

The basic operations on our linear structure are specififlteibi near interface in the structure
package.

public interface Linear<E> extends Structure<E>
{ !/ we have size, isEnpty, & clear from Structure

public void add(E val ue);
/! pre: value is non-null
/1 post: the value is added to the collection,
11 the repl acenent policy not specified.

public E renove();

/] pre: structure is not enpty.

/1 post: renobves an object from container
public E get();

/] pre: structure is not enpty.
/1 post: returns ref to next object to be renoved.

We will look at two particular highly restricted linear sttures:

e Stack all additions and deletions at same end: LIFO (last-int-brg)

¢ Queue all additions at one end, all deletions from the other: FIR3t-in, first-out)

CS 211 Data Structures Fall 2009

Stacks

We start with stacks. The idea is very simple. Consider a sittlys. New trays are added at the
top and trays are also taken from the top when needed. (Saaplegpdon’t go in and try to take a
tray from the middle or from the bottom of the stack.

Stacks can be described recursively: A stack is either emiphas its top element sitting on a
(smaller) stack.

All additions and deletions take place at the top of the stack

We traditionally refer to addition apushand removal apop, motivated by the analogy with
a spring-loaded stack of trays. Here we’ll use both name=rchaangeably (and provide both
methods) for thedd or push andr enove or pop. There are also two nhames for the operation
of looking at the element on top of the stack without removinget or peek.

So the three major operations allowed on a stack are:

e push/add
e pop/remove

e get/peek

The structure package includes an interface to which atkstaplementations must adhere:

See Structure Source:
/ home/ j teresco/ shared/ cs211/src/ structureb/ Stack. java

Applications of Stacks

Stacks are LIFO (“last in, first out”), making them an appraf& structure for maintaining “Undo”
information in various programs. Consider your favoritet teditor (emacs) or word processor.

Computing Arithmetic Expressions

Some machines have stack-based machine language ir@tsicuch machines require all arith-
metic calculations to take place using data on the stacklaatdhe result is placed on the stack at
the end.

Such a machine might have instructions such as:

e PUSH A - push the value from variabkonto the stack.

e POP A—pop avalue from the stack and store it in variahle

CS 211 Data Structures Fall 2009

e ADD - pop the top two elements from the stack, add them and pusiesh# back onto the
stack.

e SUB, MULT, DI V, etc. are similar.

We will see in an upcoming lab assignment that the PostSlanmmguage (understood by many
printers) is a stack-based language.
On such a machine, to calculate
A=X* Y+ Z* W
one would need to use the following sequence:

PUSH X

PUSH Y

MULT

PUSH Z

PUSH W

MULT

ADD

POP A
How would you generate this code?
The ideas is to write the expression in postfix form: eachatpeicomes after its operands.
For example2 + 3 become 3 +

There are three primary ways to represent an arithmeticesspn:

e infix notation:(2 + 3) * 4 - 5
e (Polish) postfix notation2 3 + 4 * 5 -

e (Polish) prefix notation: * + 2 3 4 5
In general, to convert an infix expression to postfix notation

1. Write the expression fully parenthesized.

2. Recursively move operators after operands, droppinghgagses when done.

For example:

X* Y+Z% Wes (X*Y) +(Zx W —(XY*) (ZW*) +—XY=* Z
W+ +

Note: in Polish notation, parentheses are no longer needed.

Once in postfix, it's easy to generate code as follows:

3

CS 211 Data Structures Fall 2009

¢ If we encounter an operand, generateUsH command

¢ If we encounter an operator, generate the command to do plesation.

Our expression above will compile to

PUSH X
PUSH Y
MULT

You will do something very similar to this in lab this week.

Run-Time Stacks on Computers

Probably the most common use of stacks is one we use prettly auecy time we run a program,
but rarely think about — theall stackof a program.

The text illustrates how the call stack works for a fairly q@ex recursive method. In class, we
will look at a simpler case — a binary search.

Recall the binary search on arrays that we looked at a whilk.bac

See Example:
/ home/ j t eresco/ shared/ cs211/ exanpl es/ Bi nSear ch

What'’s really happening when we run this program?

First, mai n gets called and its parmeters and local variables are ##daan the staclr gs,
si ze,orderedlnts,i.

We then allocate the arrays and fill them in. The memory froesé¢his not part of the call stack. It
is retrieved from a separate part of memory calledhteap We won't worry about the details of
that at the moment.

Then, we make a call teear ch. Its formal parametergel t s, f i ndEl t) are allocated on the
stack and are initialized to the values specified by the icaliactual parameters

This is more formally known aseall frameor anactivation recordand keeps track of some other
things, like where to return to when the method returns.

Next, bi nsear ch is called and its parameters and local variables are adldcal t s, | ow,
hi gh,findElt,m d.

Then it gets called again and a new activation record is edea brand new copy of its parameters
and local variables.

The recursive calls continue on, piling up activation relsoon the stack. When methods return,
we pop the activation records off the stack and continueglaihat we were doing before the

CS 211 Data Structures Fall 2009

method was called. We know where to go back by the return addhat was allocated as part of
the activation record.

The text shows how you can change the recursive quicksotiodento an iterative quicksort
procedure by building your own call frames and putting themacstack. It's worth reading, but
we won't go over it in class.

Stack |mplementations

The structure package also includes an abstract édlas$ r act St ack which provides some
of the methods with duplicate names, so they need only becirmgahted once in an actual stack
implementation. Thus, our actual implementations do netlrte providepush, pop, andpeek,
but onlyadd, r enove, andget .

As we saw earlier, stacks are essentially restricted lredstlaerefore have similar representations.

Array-based implementation

Since all operations are at the top of the stack, an arrayeim@htation is reasonable. One is
provided in the clasSt ackAr r ay in structure.

public class StackArray<E> inpl enments Stack<E>

{

protected int top;
protected E[] data;

The array implementation keeps the bottom of the stack abdéiggnning of the array. It grows
toward the end of the array. We definep to be the index of the element currently at the top of
the stack.

So what does op need to be set to when a stack is created? It should be -1! Theoeelement
at the top of the stack in this case, so we point to the placeerthere would be one.

We can pretty easily develop some of this implementation:

public StackArray(int size) {
data = (E[])new bj ect[size];
clear();

}

public void clear() {
top = -1;
}

public void add(E iten) {

CS 211 Data Structures Fall 2009

Assert.pre(!isFull(),"Stack is not full.");
t op++;
data[top] = item

public E remove() {
Assert.pre(!isEnpty(),"Stack is not enpty.");
E result = data[top];
data[top] = null;
top--;
return result;

public E get() {
/1 raise an exception if stack is already enpty
Assert.pre(!isenpty(),"Stack is not enpty.");
return data[top];

}

public int size() {
return top+1;

}

publ i c bool ean isEnpty() {
return size() == 0;

}

public boolean isFull () {
return top == (data.length-1);

}

See Structure Source:
/ home/ j teresco/ shared/ cs211/src/ structureb/ StackArray.|ava

The only problem is if you attempt to push an element when tregyas full. The assertion
Assert.pre(!isFull(),"Stack is full.");

will fail, throwing an exception. This is unexpected belmirom a stack, and would be potentially
problematic for users.

We can also throw an exception when trying to remove from aptgstack, but that's a misuse of
the structure, not a shortcoming of our implementation.

Thus it could make more sense to implement this Wieltt or to allow unbounded growth (at
cost of occasional(n) delays on a push).

The basics of this implementation:

CS 211 Data Structures Fall 2009

prot ected Vector<E> dat a;

public StackVector() {
data = new Vector<E>();

}

public void add(E item {
data.add(item;
}

public E remove() {
return data.renove(size()-1);

}

public E get() {
/1l raise an exception if stack is already enpty
return data.get(size()-1);

}

publ i ¢ bool ean i sEnpty() {
return size() == 0;

}

public int size() {
return data.size();

}

public void clear() {
data.clear();

}

See Structure Source:
/ home/ j teresco/ shared/ cs211/src/structure5/ StackVector.java

What about the complexity of the supported operations?

o All operations areg)(1) with exception of the occasionpush (when theVect or needs
to grow) andcl ear, which should replace all entries bl | in order to let them be
garbage-collected.

So this is very nice. It's easy to implement, building on Yfext or s that takes care of resizing
for us. However, it has a few disadvantages:

e add/push is O(n) when theVect or needs to grow.

e Space usage is proportional to the largest inteviealt or needed for the life of the stack.
If we place a large number of elements in the stack at somé poalater will have only a
few, we are still using all of that memory.

7

CS 211 Data Structures Fall 2009

We can take care of both of these by using a linked list as dernal representation.

Linked list implementation

We considered a few types of linked lists — which are appaterior use as the internal structure
of a stack?

To decide this, we consider which operations we need. Wighvict or implementation, we
added things at the end, and only doubly-linked lists aldef#icient deletions from the end. So a
doubly-linked list would work.

However, there’s no rule that says the element at the topeddtiick has to be at the end of the list
the way it was at the end of théect or . The restrictions on the allowed operations of a stack give
us another good option. We can keep the top at the head oftrenlil always usadd/r enpove
operations on the first elemer@i ngl yLi nkedLi st s are very good at these two operations.

The linked list implementation is very similar to tMect or implementation, it just puts things
at the other end.

See Structure Source:
/ home/ j teresco/ shared/ cs211/src/structure5/ StackLi st.java

What are the complexities for our stack operations with thegptementations?

e get, pop, andi sEnpt y are allO(1) for the three implementations.

e push can beO(n) in worst case foiSt ackVect or, but on average it i®)(1). For the
other implementations, it is alway$(1).

e cl ear isO(1) for St ackLi st, O(n) for St ackAr r ay andSt ackVect or .

e St ackArray uses a fixed amount of space: this wastes space if you resmrvauch,
while the program will fail if there is too little.

e St ackVect or provides more flexibility, but at the cost of occasional figant delays
(though average cost gfush is O(1)). Also, space will never be given back once the
Vect or grows large at some point in the stack’s lifetime.

e ForSt ackLi st , all operations aré(1) in the worst case, but it requiréyn) extra space
for the links.

Queues
The other linear structure we will consider is tipgeue a FIFO (“first in-first out”) structure.

The only way we are allowed to use a queue is by adding valubetend of the line” and taking
values out from the “front of the line”.

Applications include:

CS 211 Data Structures Fall 2009

e Waiting lines

e Event Queues: Keyboard and mouse events in Java, the Mamyeshared computers.

TheQueue interface:

See Structure Source:
/ home/ j teresco/ shared/ cs211/src/ structure5/ Queue. j ava

Rather thampush andpop, we have the queue-specific teressqueue anddequeue, which
are equivalent t@add andr enove. There is also peek, which is the equivalent tget : this
tells us the value that would be dequeued without actuallyidaing it.

Queue Implementations

As with stacks, we start with an abstract cladsst r act Queue that will take care of the queue-
specific methods that can be implemented as calls to othdraaet We will not need to worry
about these in our actual implementations.

Linked List implementation

If we want to use a linked list to implement a queue, we neecetd® which end to add to and
which end to remove from, and which of our list structurespprapriate.

Clearly, theSi ngl yLi nkedLi st is not good enough, since that one only hauead pointer
and eitheradd or r enpve would need to be atv(n) operation, depending on which end of the
list represents the head of the queue.

A Doubl yLi nkedLi st would certainly work. The important operations would®@), but that
implementation has an addition@ln) space overhead above and beyond the references needed to
store ourSi ngl yLi nkedLi st s.

How about aCi r cul ar Li st ? There we at least have direct (or nearly direct) accesstto bo
head andt ai | references.

But should weadd to thehead andr enpve from thet ai | , or vice-versa?

For circular listsadd to thehead, add to thet ai | andr enmove from head are allO(1), but
remove fromt ai | isO(n). So the latter should be avoided.

We can do exactly this if our queue doesatsqueue/add to thet ai | and itsdequeue/r enove
from thehead.

All of the operations aré)(1).

See Structure Source:
/ hone/ jteresco/ shared/ cs211/src/structure5/ Queuelist.java

Vect or implementation

CS 211 Data Structures Fall 2009

We can implement a queue using/act or with thehead at index 0 and ai | moving to the
right as items are enqueued. Addition of new elements is deimg theVect or ’'s add method,
while dequeues set theVect or entry at thehead slot tonul | and incremenhead (move it
one place to the right). This allows baglild/enqueue andr enove/dequeue to beO(1).

However, there is a big problerenqueues anddequeues will result in elements removed from
the left side and added to the right side. Thus the queue walK” off to the right over time, even

if it remains the same size (what happens after @0ueues and 100dequeues?). Yes, the

Vect or will keep growing, but each time it grows, it will cost twice enuch. And we never give
back the memory.

One possibility to improve this a bit is to redetad to O each time our queue is empty, but this
will not help for queue usages where this case is unlikely.

Alternatively, we could change tliliequeue so that the element at tieead (index 0) is actually
removed. However, this would make tdequeue methodO(n). [Note: This is the actual
implementation.]

See Structure Sour ce:
/[honme/jteresco/ shared/ cs211/src/structureb/ QueueVector.|ava

Given thatadd/r emove from the front of aVect or either must waste space or havén) op-
erations at least some of the time, it seems WMext or s might not be the best choice for our
queues.

Clever array implementation
We can also have an array-based queue implementation,ibat Idit trickier!

Suppose we know that our queue will never contain more tharesmnstant number of elements.
This is an upper bound on the maximum size of the queue.

We can use this to solve the problem of the queue “walkingbo# end of the array.

Consider a “circular” array implementation, where we mamtaferences (array indices) referring
to thehead andt ai | of the queue.

We increment thdead reference on @equeue and increment theéai | on anenqueue. If
nothing else is done, you soon bump up against the end of thg, aven if there is lots of space
at the beginning (which used to hold elements which have reemlbemoved from the queue).

To avoid this, we pretend that the array wraps around fronettteback to its beginning. When
we walk off end of the array, we go back to beginning:

index = (index + 1) nod arraysize

Notice that the representation of a full queue and an empé&pewan have identical values for
front and rear.

Once we have this idea down, it remains to worry about somey pietails.

10

CS 211 Data Structures Fall 2009

e head refers to the next slot where we can find an element dequeue.

e Shouldt ai | refer to the slot containing the most recenglgqueued item or the empty
slot where the nex¢nqueued item should be replaced?

¢ In either of these cases, how would we be able to tell therdiffee between an empty queue
and a full queue?

The solution used by theueueAr r ay is to keep track of théead and acount of the number
of items currently in the queue. Note thHa¢ad andcount together take the place ofai | .
When we need theai | reference, we compute it fromead andcount :

int tail = (head + count) % data.l ength;

See Structure Source:
/ home/ j teresco/ shared/ cs211/src/ structure5/ QueueArray.java

Alternatively, we could keep track of theead andt ai | rather than a&ount. To be able to
determine whether a queue is full or empty requires that waysd leave an empty slot and that
we keep the ai | reference pointing to the slot where the next element teripueued will be
placed. Here, an empty queue will hdvead == tai |l . The queue is full ihead = (taill

+ 1) % dat a. | engt h. When this is true, there would still be one empty slot in theusy but
this is the cost to be able to determine whether the queuepsyesn full without thecount .

The complexity of operations for tHgueueAr r ay is the same as fdueueLi st . (BothO(1))

The big disadvantage of thgueueAr r ay is its limited size, and it is only useful in cases where
we know an upper bound on the number of elements to be stotbd gueue at any given time.

Final note: theQueueAr r ay does not bother to set the array entry é@queued element to
nul | . Similarly for items removed witlel ear . This saves a bit of time, but the Java garbage
collector would not be able to clean up thlequeued elements even if they are not in use else-
where, not until the slot is reused after the queue conterap around through the array. It would
probably make sense to be more consistent Wehbt or and clean up these references.

Stack/Queue example: Running a Maze

The text has a section about using stacks and queues to firth thpaugh a maze. We won’t go
through that in great detail (at least not by tracing the itbetd the code) but it's a good example
of where stacks and queues are useful.

| have original text example copied and slightly modifiedtfnwsome example input mazes):

See Example:
/[home/jteresco/ shared/ cs211/ exanpl es/ MazeRunner

At any given time, the stack in this example contains a cotlecof places (moves) we still need
to try, given where we've already been.

11

CS 211 Data Structures Fall 2009

We start (appropriately) at the start locationgoys hing its location onto the stack. Each step of
the solution process involvespop of the next move to make. If we haven't arrived at the goal
position, we look in each of the 4 directions, and if we haveyed been there and there is no wall,

we push that location to be tried later.

How does this work for a maze with no internal walls?

Now what happens if we make the stack into a queue? How willnweged on the maze with no
internal walls?

Using a stack will result in depth firstsearch for the goal. Using a queue will result ibraadth
first search.

We will see stacks and queues along the way later in the semastl you are using stacks in the
postscript lab assignment.

12

