
Computer Science 211
Data Structures
Mount Holyoke College
Fall 2009

Topic Notes: Linear Structures

The structures we’ve seen so far,Vectors and linked lists, allow insertion and deletion of ele-
ments from any position in the structure. So there is an “order” to the structure, but that order does
not restrict how we access or modify the structure.

There may be significant differences in efficiency when modifying or accessing the structure in a
way that is perfectly legal but may be hard to implement efficiently. Moreover, it may not be clear
to the user of a structure which operations are efficient and which will incur a significant cost.

Linear structuresare more restricted, allowing only a singleadd and singleremove method,
neither of which allows us to specify a position within the structure.

Why would we want to restrict our structures in such a way? Morerestrictions on a structure
generally allows for more efficient implementation of its supported operations. Since we know how
it will be used (and in fact enforce this by limiting the number of public methods), we can make
sure we use an appropriate internal representation to ensure efficiency of the supported operations.

The basic operations on our linear structure are specified intheLinear interface in the structure
package.

public interface Linear<E> extends Structure<E>
{ // we have size, isEmpty, & clear from Structure

public void add(E value);
// pre: value is non-null
// post: the value is added to the collection,
// the replacement policy not specified.

public E remove();
// pre: structure is not empty.
// post: removes an object from container

public E get();
// pre: structure is not empty.
// post: returns ref to next object to be removed.

}

We will look at two particular highly restricted linear structures:

• Stack: all additions and deletions at same end: LIFO (last-in, first-out)

• Queue: all additions at one end, all deletions from the other: FIFO(first-in, first-out)



CS 211 Data Structures Fall 2009

Stacks
We start with stacks. The idea is very simple. Consider a stackof trays. New trays are added at the
top and trays are also taken from the top when needed. (Sane) people don’t go in and try to take a
tray from the middle or from the bottom of the stack.

Stacks can be described recursively: A stack is either emptyor has its top element sitting on a
(smaller) stack.

All additions and deletions take place at the top of the stack.

We traditionally refer to addition aspushand removal aspop, motivated by the analogy with
a spring-loaded stack of trays. Here we’ll use both names interchangeably (and provide both
methods) for theadd or push andremove or pop. There are also two names for the operation
of looking at the element on top of the stack without removingit: get or peek.

So the three major operations allowed on a stack are:

• push/add

• pop/remove

• get/peek

The structure package includes an interface to which all stack implementations must adhere:

See Structure Source:
/home/jteresco/shared/cs211/src/structure5/Stack.java

Applications of Stacks
Stacks are LIFO (“last in, first out”), making them an appropriate structure for maintaining “Undo”
information in various programs. Consider your favorite text editor (emacs) or word processor.

Computing Arithmetic Expressions

Some machines have stack-based machine language instructions. Such machines require all arith-
metic calculations to take place using data on the stack and that the result is placed on the stack at
the end.

Such a machine might have instructions such as:

• PUSH A – push the value from variableA onto the stack.

• POP A – pop a value from the stack and store it in variableA.

2



CS 211 Data Structures Fall 2009

• ADD – pop the top two elements from the stack, add them and push theresult back onto the
stack.

• SUB, MULT, DIV, etc. are similar.

We will see in an upcoming lab assignment that the PostScriptlanguage (understood by many
printers) is a stack-based language.

On such a machine, to calculate

A = X * Y + Z * W

one would need to use the following sequence:

PUSH X
PUSH Y
MULT
PUSH Z
PUSH W
MULT
ADD
POP A

How would you generate this code?

The ideas is to write the expression in postfix form: each operator comes after its operands.

For example,2 + 3 becomes2 3 +

There are three primary ways to represent an arithmetic expression:

• infix notation:(2 + 3) * 4 - 5

• (Polish) postfix notation:2 3 + 4 * 5 -

• (Polish) prefix notation:- * + 2 3 4 5

In general, to convert an infix expression to postfix notation:

1. Write the expression fully parenthesized.

2. Recursively move operators after operands, dropping parentheses when done.

For example:

X * Y + Z * W −→ (X * Y) + (Z * W) −→ (X Y *) (Z W *) + −→ X Y * Z
W * +

Note: in Polish notation, parentheses are no longer needed.

Once in postfix, it’s easy to generate code as follows:

3



CS 211 Data Structures Fall 2009

• If we encounter an operand, generate aPUSH command

• If we encounter an operator, generate the command to do that operation.

Our expression above will compile to

PUSH X
PUSH Y
MULT
...

You will do something very similar to this in lab this week.

Run-Time Stacks on Computers

Probably the most common use of stacks is one we use pretty much every time we run a program,
but rarely think about – thecall stackof a program.

The text illustrates how the call stack works for a fairly complex recursive method. In class, we
will look at a simpler case – a binary search.

Recall the binary search on arrays that we looked at a while back.

See Example:
/home/jteresco/shared/cs211/examples/BinSearch

What’s really happening when we run this program?

First, main gets called and its parmeters and local variables are allocated on the stack:args,
size, orderedInts, i.

We then allocate the arrays and fill them in. The memory from these is not part of the call stack. It
is retrieved from a separate part of memory called theheap. We won’t worry about the details of
that at the moment.

Then, we make a call tosearch. Its formal parameters(elts, findElt) are allocated on the
stack and are initialized to the values specified by the caller asactual parameters.

This is more formally known as acall frameor anactivation recordand keeps track of some other
things, like where to return to when the method returns.

Next, binsearch is called and its parameters and local variables are allocated: elts, low,
high, findElt, mid.

Then it gets called again and a new activation record is created: a brand new copy of its parameters
and local variables.

The recursive calls continue on, piling up activation records on the stack. When methods return,
we pop the activation records off the stack and continue doing what we were doing before the

4



CS 211 Data Structures Fall 2009

method was called. We know where to go back by the return address that was allocated as part of
the activation record.

The text shows how you can change the recursive quicksort method into an iterative quicksort
procedure by building your own call frames and putting them on a stack. It’s worth reading, but
we won’t go over it in class.

Stack Implementations
The structure package also includes an abstract classAbstractStack which provides some
of the methods with duplicate names, so they need only be implemented once in an actual stack
implementation. Thus, our actual implementations do not need to providepush, pop, andpeek,
but onlyadd, remove, andget.

As we saw earlier, stacks are essentially restricted lists and therefore have similar representations.

Array-based implementation

Since all operations are at the top of the stack, an array implementation is reasonable. One is
provided in the classStackArray in structure.

public class StackArray<E> implements Stack<E>
{

protected int top;
protected E[] data;
...

The array implementation keeps the bottom of the stack at thebeginning of the array. It grows
toward the end of the array. We definetop to be the index of the element currently at the top of
the stack.

So what doestop need to be set to when a stack is created? It should be -1! Thereis no element
at the top of the stack in this case, so we point to the place where there would be one.

We can pretty easily develop some of this implementation:

public StackArray(int size) {
data = (E[])new Object[size];
clear();

}

public void clear() {
top = -1;

}

public void add(E item) {

5



CS 211 Data Structures Fall 2009

Assert.pre(!isFull(),"Stack is not full.");
top++;
data[top] = item;

}

public E remove() {
Assert.pre(!isEmpty(),"Stack is not empty.");
E result = data[top];
data[top] = null;
top--;
return result;

}

public E get() {
// raise an exception if stack is already empty
Assert.pre(!isEmpty(),"Stack is not empty.");
return data[top];

}

public int size() {
return top+1;

}

public boolean isEmpty() {
return size() == 0;

}

public boolean isFull() {
return top == (data.length-1);

}

See Structure Source:
/home/jteresco/shared/cs211/src/structure5/StackArray.java

The only problem is if you attempt to push an element when the array is full. The assertion

Assert.pre(!isFull(),"Stack is full.");

will fail, throwing an exception. This is unexpected behavior from a stack, and would be potentially
problematic for users.

We can also throw an exception when trying to remove from an empty stack, but that’s a misuse of
the structure, not a shortcoming of our implementation.

Thus it could make more sense to implement this withVector to allow unbounded growth (at
cost of occasionalO(n) delays on a push).

The basics of this implementation:

6



CS 211 Data Structures Fall 2009

protected Vector<E> data;

public StackVector() {
data = new Vector<E>();

}

public void add(E item) {
data.add(item);

}

public E remove() {
return data.remove(size()-1);

}

public E get() {
// raise an exception if stack is already empty
return data.get(size()-1);

}

public boolean isEmpty() {
return size() == 0;

}

public int size() {
return data.size();

}

public void clear() {
data.clear();

}

See Structure Source:
/home/jteresco/shared/cs211/src/structure5/StackVector.java

What about the complexity of the supported operations?

• All operations areO(1) with exception of the occasionalpush (when theVector needs
to grow) andclear, which should replace all entries bynull in order to let them be
garbage-collected.

So this is very nice. It’s easy to implement, building on theVectors that takes care of resizing
for us. However, it has a few disadvantages:

• add/push is O(n) when theVector needs to grow.

• Space usage is proportional to the largest internalVector needed for the life of the stack.
If we place a large number of elements in the stack at some point and later will have only a
few, we are still using all of that memory.

7



CS 211 Data Structures Fall 2009

We can take care of both of these by using a linked list as our internal representation.

Linked list implementation

We considered a few types of linked lists – which are appropriate for use as the internal structure
of a stack?

To decide this, we consider which operations we need. With the Vector implementation, we
added things at the end, and only doubly-linked lists allowed efficient deletions from the end. So a
doubly-linked list would work.

However, there’s no rule that says the element at the top of the stack has to be at the end of the list
the way it was at the end of theVector. The restrictions on the allowed operations of a stack give
us another good option. We can keep the top at the head of the list and always useadd/remove
operations on the first element.SinglyLinkedLists are very good at these two operations.

The linked list implementation is very similar to theVector implementation, it just puts things
at the other end.

See Structure Source:
/home/jteresco/shared/cs211/src/structure5/StackList.java

What are the complexities for our stack operations with theseimplementations?

• get, pop, andisEmpty are allO(1) for the three implementations.

• push can beO(n) in worst case forStackVector, but on average it isO(1). For the
other implementations, it is alwaysO(1).

• clear is O(1) for StackList, O(n) for StackArray andStackVector.

• StackArray uses a fixed amount of space: this wastes space if you reserve too much,
while the program will fail if there is too little.

• StackVector provides more flexibility, but at the cost of occasional significant delays
(though average cost ofpush is O(1)). Also, space will never be given back once the
Vector grows large at some point in the stack’s lifetime.

• ForStackList, all operations areO(1) in the worst case, but it requiresO(n) extra space
for the links.

Queues
The other linear structure we will consider is thequeue, a FIFO (“first in-first out”) structure.

The only way we are allowed to use a queue is by adding values tothe “end of the line” and taking
values out from the “front of the line”.

Applications include:

8



CS 211 Data Structures Fall 2009

• Waiting lines

• Event Queues: Keyboard and mouse events in Java, the Mac, or time-shared computers.

TheQueue interface:

See Structure Source:
/home/jteresco/shared/cs211/src/structure5/Queue.java

Rather thanpush andpop, we have the queue-specific termsenqueue anddequeue, which
are equivalent toadd andremove. There is also apeek, which is the equivalent toget: this
tells us the value that would be dequeued without actually dequeuing it.

Queue Implementations
As with stacks, we start with an abstract class,AbstractQueue that will take care of the queue-
specific methods that can be implemented as calls to other methods. We will not need to worry
about these in our actual implementations.

Linked List implementation

If we want to use a linked list to implement a queue, we need to decide which end to add to and
which end to remove from, and which of our list structures is appropriate.

Clearly, theSinglyLinkedList is not good enough, since that one only had ahead pointer
and eitheradd or remove would need to be anO(n) operation, depending on which end of the
list represents the head of the queue.

A DoublyLinkedListwould certainly work. The important operations would beO(1), but that
implementation has an additionalO(n) space overhead above and beyond the references needed to
store ourSinglyLinkedLists.

How about aCircularList? There we at least have direct (or nearly direct) access to both
head andtail references.

But should weadd to thehead andremove from thetail, or vice-versa?

For circular lists,add to thehead, add to thetail andremove from head are allO(1), but
remove from tail is O(n). So the latter should be avoided.

We can do exactly this if our queue does itsenqueue/add to thetail and itsdequeue/remove
from thehead.

All of the operations areO(1).

See Structure Source:
/home/jteresco/shared/cs211/src/structure5/QueueList.java

Vector implementation

9



CS 211 Data Structures Fall 2009

We can implement a queue using aVector with thehead at index 0 andtail moving to the
right as items are enqueued. Addition of new elements is doneusing theVector’s add method,
while dequeues set theVector entry at thehead slot tonull and incrementhead (move it
one place to the right). This allows bothadd/enqueue andremove/dequeue to beO(1).

However, there is a big problem:enqueues anddequeues will result in elements removed from
the left side and added to the right side. Thus the queue will “walk” off to the right over time, even
if it remains the same size (what happens after 100enqueues and 100dequeues?). Yes, the
Vector will keep growing, but each time it grows, it will cost twice as much. And we never give
back the memory.

One possibility to improve this a bit is to resethead to 0 each time our queue is empty, but this
will not help for queue usages where this case is unlikely.

Alternatively, we could change thedequeue so that the element at thehead (index 0) is actually
removed. However, this would make thedequeue methodO(n). [Note: This is the actual
implementation.]

See Structure Source:
/home/jteresco/shared/cs211/src/structure5/QueueVector.java

Given thatadd/remove from the front of aVector either must waste space or haveO(n) op-
erations at least some of the time, it seems likeVectors might not be the best choice for our
queues.

Clever array implementation

We can also have an array-based queue implementation, but itis a bit trickier!

Suppose we know that our queue will never contain more than some constant number of elements.
This is an upper bound on the maximum size of the queue.

We can use this to solve the problem of the queue “walking” offone end of the array.

Consider a “circular” array implementation, where we maintain references (array indices) referring
to thehead andtail of the queue.

We increment thehead reference on adequeue and increment thetail on anenqueue. If
nothing else is done, you soon bump up against the end of the array, even if there is lots of space
at the beginning (which used to hold elements which have now been removed from the queue).

To avoid this, we pretend that the array wraps around from theend back to its beginning. When
we walk off end of the array, we go back to beginning:

index = (index + 1) mod arraysize

Notice that the representation of a full queue and an empty queue can have identical values for
front and rear.

Once we have this idea down, it remains to worry about some picky details.

10



CS 211 Data Structures Fall 2009

• head refers to the next slot where we can find an element for adequeue.

• Shouldtail refer to the slot containing the most recentlyenqueued item or the empty
slot where the nextenqueued item should be replaced?

• In either of these cases, how would we be able to tell the difference between an empty queue
and a full queue?

The solution used by theQueueArray is to keep track of thehead and acount of the number
of items currently in the queue. Note thathead andcount together take the place oftail.
When we need thetail reference, we compute it fromhead andcount:

int tail = (head + count) % data.length;

See Structure Source:
/home/jteresco/shared/cs211/src/structure5/QueueArray.java

Alternatively, we could keep track of thehead andtail rather than acount. To be able to
determine whether a queue is full or empty requires that we always leave an empty slot and that
we keep thetail reference pointing to the slot where the next element to beenqueued will be
placed. Here, an empty queue will havehead == tail. The queue is full ifhead = (tail
+ 1) % data.length. When this is true, there would still be one empty slot in the queue, but
this is the cost to be able to determine whether the queue is empty or full without thecount.

The complexity of operations for theQueueArray is the same as forQueueList. (BothO(1))

The big disadvantage of theQueueArray is its limited size, and it is only useful in cases where
we know an upper bound on the number of elements to be stored inthe queue at any given time.

Final note: theQueueArray does not bother to set the array entry fordequeued element to
null. Similarly for items removed withclear. This saves a bit of time, but the Java garbage
collector would not be able to clean up thedequeued elements even if they are not in use else-
where, not until the slot is reused after the queue contents wrap around through the array. It would
probably make sense to be more consistent withVector and clean up these references.

Stack/Queue example: Running a Maze
The text has a section about using stacks and queues to find a path through a maze. We won’t go
through that in great detail (at least not by tracing the details of the code) but it’s a good example
of where stacks and queues are useful.

I have original text example copied and slightly modified (with some example input mazes):

See Example:
/home/jteresco/shared/cs211/examples/MazeRunner

At any given time, the stack in this example contains a collection of places (moves) we still need
to try, given where we’ve already been.

11



CS 211 Data Structures Fall 2009

We start (appropriately) at the start location bypushing its location onto the stack. Each step of
the solution process involves apop of the next move to make. If we haven’t arrived at the goal
position, we look in each of the 4 directions, and if we have not yet been there and there is no wall,
wepush that location to be tried later.

How does this work for a maze with no internal walls?

Now what happens if we make the stack into a queue? How will we proceed on the maze with no
internal walls?

Using a stack will result in adepth firstsearch for the goal. Using a queue will result in abreadth
first search.

We will see stacks and queues along the way later in the semester, and you are using stacks in the
postscript lab assignment.

12


