Computer Science 211
M C Data Structures

——__ Mount Holyoke College
MOUNT HOLYOKE COLLEGE Fa” 2009

Topic Notes: Java and Object-Oriented Programming
Review

There are many ways to write a program to solve a particutaslpm correctly. The ways to write
it so as to rurefficientlyare much more limited.

In addition to efficiency and correctness, we will think abthese implmentation goals for our
programs:

1. Robustness

e produce correct output for all inputs - including erroneoymsit
2. Adaptability

e a program can evolve over time with new requirements
3. Reusability

e develop general-purpose code that may be used in multipiatgins

Programming L anguages

We will be programming in Java.

There are many programming languages, and Java is just angoéx

We’'ll take a look at a few others, just for fun. These are aklld, world” programs.

See Example:
/ home/ j teresco/ shared/ cs211/ exanpl es/ Hell o

Seehtt p: // ww2. | at ech. edu/ ~acni hel | owor | d for many more examples.

These languages all basically do the same thing, though atemauch better than others at certain
types of tasks. We choose to study data structures and astygnogramming in Java because it
is a modern, object-oriented language that runs on all nmodemputer systems. An appropriate
choice of programming language makes it easier to write-higgdity software.

All computer languages are abstractionto make it more convenient to get computers to do what
we want them to do. We could write in 0’s and 1's, but a varidtlanguages have been developed
to facilitate the development of software.

Most langauages, including C and C++ have compilers thastasource code into a executable
program that runs on a particular machine. Java is differédlt Java compilers translate to a
particularvirtual machine which, in turn, runs on specific computers.

CS 211 Data Structures Fall 2009

This gives Java some advantages that we will discuss alagvdly. For now, we will look at
programming in Java as a general-purpose modern objemited programming language.

Java Review/Overview
Back to our Hello, world example.

Things to note in Hello.java:

e Everything in Java has to be in a class. More about classesrimate. In C, there are
no classes and in C++ there are classes, but you can writadnaaiutside of any class in
addition to class methods.

e Many of you have have seen only Java applets — this is aalaptication We will look
primarily at applications here.

e Each class can have methods. An application has a classtisahave arai n method with
the method signature:

public static void nmain(String[] args)

Exactly what is meant by all of these will become clear laker, basically this is where
execution will start when we run this program.

e To execute this program using the command-line (text) faterto Java:
javac Hello.java

This compilesthe Java program (in thej ava file) into a. cl ass file. A . cl ass file
containslava Btyecodéhat is ready to be executed in a JVM.

To runit;
java Hell o

The JVM is what allows Java to be portable. We can compile jreva file to a. cl ass
file on any computer and any other computer running the samsgoweof Java will be able
to execute it.

e Comments:
/'l starts comments which go to end of |ine

/* multi-line comments
are done like this =/

CS 211 Data Structures Fall 2009

You most certainly have been strongly encouraged or, m&edy)irequired to document
your program using comments in your previous courses.

The comment above the headerHel | 0.] ava is a special kind of comment, it starts
with / = indicating that it is alavadoccomment. These comments are used to generate
documentation for Java programs automatically.

We can generate the Javadoc for this simple program:
j avadoc Hell o.java

And then we can view it in our favorite web browser.
Note that the “class comment” is included at the top,@et hor tag is ignored but useful.
The comment is in HTML (note theP> tag to mark a new paragraph).

Each method is listed, and the method comment (also begjrwaiith / * +) includes a de-
scription and the parameters with t@g@ar amtag.

We will see other Javadoc tags in later examples.
e The text output is made by a call8 st em out . pri nt| n() which takes one argument
— a string to print to the terminal.
This plays the role of C'eri nt f and C++'scout .
Note: Syst em out . pri nt () does the same, but without the new line at the end.

Object-Oriented (OO) Design

e Objects are building blocks of software systems
e Program is collection of interacting objects
e Objects cooperate to complete a task

e Objects communicate by sending messages to each other
Objects can model objects from world:

e Physical things (car, student, card, deck of cards)
e Concepts (meeting, date)

e Processes (Sorting, simulations)

Objects have:

CS 211 Data Structures Fall 2009

e Properties (blue, Ford, 4 doors)
o Capabilities (drive, change speed, admit passenger, brake)

Grocery item example: some properties we will consider & isize and item price and unit
price. We will change one property - price.

Objects are responsible for knowing how to perform actions:

e Commands: change object’s properties (e.g., set speedjeipaice)

e Queries: Provide answer based on object’s properties (@g.fast?, what is the size?)
Capabilities implemented asethods

e invoked by sending messages to an object
o mutatormethods change an object’s properties

e accessomethods query an object’s state
Properties of an object are implementediakisor instance variables

e constitute the “state” of the object

¢ the state affects how an object reacts to messages
Properties can be:

e attributes - descriptions (e.g., red)
e components (e.g., doors)

e associations (e.g., driver)

Let’'s consider an example a bit different from the ones intéx¢in Chapter 1 (which | encourage
you to look at as well).

Suppose our goal is comparison shopping. Among a collecfictems in a store, each of which
has a different price and size, which is the best deal?

To attempt to design this in an object-oriented fashion, wecneate objects corresponding to the
items we will compare.

We will develop an object to hold an item which has an assedigtice and size. Our class will
encapsulatehis data, meaning it can only be accessed by the methods ofass.

4

CS 211 Data Structures Fall 2009

See Example:
/ home/ j teresco/ shared/ cs211/ exanpl es/ UnitPrice

Our class to represent one of these itenRriscedl t em

What are the capabilities of a Pricedltem?

e item creation — need initial price and size
e item deletion
e query item price, size, unit price

e set item price
What are the properties?

e price
e Size

e unit price?

Let's look at the class:
We have instance variables to hold the state of the itgmi-ce andsi ze, both asdoubl es.

We do not include the unit price as an instance variablegsivee can compute it easily from the
price and size.

This is an important design decision — what information tegkand what information can be easily
recomputed. Here, any two have enough information so wgwsillkeeppr i ce andsi ze.

If we decided to keep all three, it would make some of our asmesethods simpler, but it would
complicate out mutators since they would need to updateipleiialues to keep the state of the
class consistent.

So we declare

prot ect ed doubl e price;
protected doubl e size;

Thesepr ot ect ed variables can be accessed from all methods in the class aidviiue is

persistent through the life of the object. These should belysed for things that need this persis-
tence.

We can declare variables and methods:

e publ i c: Everyone has access to this feature

5

CS 211 Data Structures Fall 2009

e prot ect ed: Features are accessible within methods of the class (engxins), but not
accessible outside.

We will generally declare instance variablega®t ect ed.
If we declared them gsubl i c, then another class could access them (or worse yet, modify
them) without going through our class methods.

e pri vat e: Features not visible in extensions or outside of this dlpegect.
pr ot ect ed andpr i vat e declarations are used to hide implementation details fi@nts.
This makes it easier to change our implementation laterefded, without affecting other

classes that make use of our class.

Each instance variable needs a type. They can be one of pavaitve types:

bool ean

char (16 bit)

i nt (32 bit)

| ong (64 bit)
f I oat (32 bit)

doubl e (64 bit)

They can also be other objects. We will see examples of tluidlgh

Next, we need one or modnstructors To construct our item, we will need to specify the price
and the size as arguments to the constructor.

public Pricedltenmdouble price, double size) {
this.price = price;
this.size = size;

Note that a constructor has the same name as the class, nuestlaeed apubl i ¢, and must not
have a return type.

This constructor has two parameters. All parameters in da¥gassed by value. That is, any
assignment to a parameter inside a method body is forgottemwhe method returns. They are
basically local variables that are initialized to the vgbassed in the actual parameter by the caller.

Note the use of hi s. to denote the instance variables with the same name as timalfpa-
rameters.t hi s is assumed and is not needed unless there is a conflict suohoas example.
Withoutt hi s in this case, we would writpri ce = pri ce and just set the value of the formal
parameter variable to itself (not especially useful).

6

CS 211 Data Structures Fall 2009

Keywordt hi s can be used in a method to refer to the object executing thbaudi.e., the
receiver of the message).

An object can call one of its own methods by writingi s. n(. . .) orjustn{...) (thethis
is assumed).

More interestingly, we can pas$i s as a parameter to another object. We will see examples later.
Next, an accessor method for the unit price.

public double unitPrice() {
return pricel/size;

}

Note here that the method is declafaabl i ¢ so it can be called from outside the class, and the
r et ur n statement. We alternately could have declared a localblarta store the computed unit
price and return that, but it is not necessary.

Finally, a mutator method to change the price of an item:
public void setPrice(double newPrice) {

price = newPrice;

}

We save the new price in our instance variable. That’s allteNloat here, the formal parameter
name is different, sbhi s. is not necessary.

We also include aoSt ri ng() method which allows instances of the class to print out thein
information in a meaningful way.

We have a short driver program to make use ofRrurcedl t enssinUni t Pri ceThr ee. j ava.
This is another Java application, i.e. a class wittea n method.

We create three items to compare, plus an extra variablddotethe one we determine to be the
best deal. These are local variables, accessible onlynilteimai n method. N@or i vat e/pr ot ect ed/publ i
qualifiers are needed or allowed on local variables.

We first construct the three itemsew creates a new instance of a class.

Next, we call gprivate helper methotb find the item among our three that has the lowest price.
This could be done without the helper method, but since wiatdatice, it makes sense to place
that code into the helper method.

We're calling a method of (or sending a message to) ourselves
We’ll worry about the actual method definition in a minuter Row, let’s look at the printout.

We’'re printing out &St r i ng. Note that we are performing+aoperation of a string constant and
an object.

A quick aside about Jav& r i ngs.

CS 211 Data Structures Fall 2009

e We can define string constantsThis is a string"
e The+ operator is used for concatenationthis is "+"a string."

e The results of a string + anything is stringChapt er "+ 2 is the same asChapt er
2II

e Strings are not a base type, but they're a bit unusual for some reasewill see later.

When we try to use an object reference & ai ng, the object's oSt ri ng() method is called.

All objects come with a defaultoSt r i ng method, but we have written ourown feri cedl t erns,
that print out some meaningful information about the object

We then change the price of one of the items and see if thaelsahe best deal.

In our helper method, we have two local variables. We calho@s of thePr i cedl t ens passed
in to get their unit prices.

Big disadvantage of this version: we're stuck with just thiteens. If we want more, we need
to declare more variables, change the number of parametdhsethelper method, change the
implementation of the helper method, each time we changeuh®er of items.

A second driver progranini t Pri ce. j ava, uses arrays.

We declare the array, here as a local variable. Note the sdwackets on the declaration to
indicate that we will have an array 8f i cedl t emobjects.

Note: We never include the size of the array in the declamatio
int[10] scores // Illegal in Java!

An array declaration in Java does not create space for thg @self. WWe need to construct the
array.

Array construction does not construct objects, it only taedhe array where we can store refer-
ences tdPri cedl t ens. These are initialized toul | — a reference to nothing. We still need to
construct the actual objects in the arrays.

Our helper method now also uses the array. The use of the slroayd look familiar to everyone.

Arrays are numbered starting at 0, and indices go wgrtoay. | engt h-1.

