
Computer Science 211
Data Structures
Mount Holyoke College
Fall 2009

Topic Notes: Java and Object-Oriented Programming
Review

There are many ways to write a program to solve a particular problem correctly. The ways to write
it so as to runefficientlyare much more limited.

In addition to efficiency and correctness, we will think about these implmentation goals for our
programs:

1. Robustness

• produce correct output for all inputs - including erroneousinput

2. Adaptability

• a program can evolve over time with new requirements

3. Reusability

• develop general-purpose code that may be used in multiple situations

Programming Languages
We will be programming in Java.

There are many programming languages, and Java is just one example.

We’ll take a look at a few others, just for fun. These are all “Hello, world” programs.

See Example:
/home/jteresco/shared/cs211/examples/Hello

Seehttp://www2.latech.edu/∼acm/helloworld for many more examples.

These languages all basically do the same thing, though someare much better than others at certain
types of tasks. We choose to study data structures and advanced programming in Java because it
is a modern, object-oriented language that runs on all modern computer systems. An appropriate
choice of programming language makes it easier to write high-quality software.

All computer languages are anabstractionto make it more convenient to get computers to do what
we want them to do. We could write in 0’s and 1’s, but a variety of languages have been developed
to facilitate the development of software.

Most langauages, including C and C++ have compilers that translate source code into a executable
program that runs on a particular machine. Java is different. All Java compilers translate to a
particularvirtual machine, which, in turn, runs on specific computers.

CS 211 Data Structures Fall 2009

This gives Java some advantages that we will discuss along the way. For now, we will look at
programming in Java as a general-purpose modern object-oriented programming language.

Java Review/Overview
Back to our Hello, world example.

Things to note in Hello.java:

• Everything in Java has to be in a class. More about classes in aminute. In C, there are
no classes and in C++ there are classes, but you can write functions outside of any class in
addition to class methods.

• Many of you have have seen only Java applets – this is a Javaapplication. We will look
primarily at applications here.

• Each class can have methods. An application has a class that must have amainmethod with
the method signature:

public static void main(String[] args)

Exactly what is meant by all of these will become clear later,but basically this is where
execution will start when we run this program.

• To execute this program using the command-line (text) interface to Java:

javac Hello.java

This compilesthe Java program (in the.java file) into a.class file. A .class file
containsJava Btyecodethat is ready to be executed in a JVM.

To run it:

java Hello

The JVM is what allows Java to be portable. We can compile the.java file to a.class
file on any computer and any other computer running the same version of Java will be able
to execute it.

• Comments:

// starts comments which go to end of line
/* multi-line comments

are done like this */

2

CS 211 Data Structures Fall 2009

You most certainly have been strongly encouraged or, more likely, required to document
your program using comments in your previous courses.

The comment above the header inHello.java is a special kind of comment, it starts
with /** indicating that it is aJavadoccomment. These comments are used to generate
documentation for Java programs automatically.

We can generate the Javadoc for this simple program:

javadoc Hello.java

And then we can view it in our favorite web browser.

Note that the “class comment” is included at the top, the@author tag is ignored but useful.

The comment is in HTML (note the<P> tag to mark a new paragraph).

Each method is listed, and the method comment (also beginning with /**) includes a de-
scription and the parameters with the@param tag.

We will see other Javadoc tags in later examples.

• The text output is made by a call toSystem.out.println() which takes one argument
– a string to print to the terminal.

This plays the role of C’sprintf and C++’scout.

Note:System.out.print() does the same, but without the new line at the end.

Object-Oriented (OO) Design

• Objects are building blocks of software systems

• Program is collection of interacting objects

• Objects cooperate to complete a task

• Objects communicate by sending messages to each other

Objects can model objects from world:

• Physical things (car, student, card, deck of cards)

• Concepts (meeting, date)

• Processes (Sorting, simulations)

Objects have:

3

CS 211 Data Structures Fall 2009

• Properties (blue, Ford, 4 doors)

• Capabilities (drive, change speed, admit passenger, brake)

Grocery item example: some properties we will consider are item size and item price and unit
price. We will change one property - price.

Objects are responsible for knowing how to perform actions:

• Commands: change object’s properties (e.g., set speed, change price)

• Queries: Provide answer based on object’s properties (e.g., how fast?, what is the size?)

Capabilities implemented asmethods.

• invoked by sending messages to an object

• mutatormethods change an object’s properties

• accessormethods query an object’s state

Properties of an object are implemented asfieldsor instance variables.

• constitute the “state” of the object

• the state affects how an object reacts to messages

Properties can be:

• attributes - descriptions (e.g., red)

• components (e.g., doors)

• associations (e.g., driver)

Let’s consider an example a bit different from the ones in thetext in Chapter 1 (which I encourage
you to look at as well).

Suppose our goal is comparison shopping. Among a collectionof items in a store, each of which
has a different price and size, which is the best deal?

To attempt to design this in an object-oriented fashion, we will create objects corresponding to the
items we will compare.

We will develop an object to hold an item which has an associated price and size. Our class will
encapsulatethis data, meaning it can only be accessed by the methods of our class.

4

CS 211 Data Structures Fall 2009

See Example:
/home/jteresco/shared/cs211/examples/UnitPrice

Our class to represent one of these items isPricedItem.

What are the capabilities of a PricedItem?

• item creation – need initial price and size

• item deletion

• query item price, size, unit price

• set item price

What are the properties?

• price

• size

• unit price?

Let’s look at the class:

We have instance variables to hold the state of the item –price andsize, both asdoubles.

We do not include the unit price as an instance variable, since we can compute it easily from the
price and size.

This is an important design decision – what information to keep and what information can be easily
recomputed. Here, any two have enough information so we willjust keepprice andsize.

If we decided to keep all three, it would make some of our accessor methods simpler, but it would
complicate out mutators since they would need to update multiple values to keep the state of the
class consistent.

So we declare

protected double price;
protected double size;

Theseprotected variables can be accessed from all methods in the class and their value is
persistent through the life of the object. These should onlybe used for things that need this persis-
tence.

We can declare variables and methods:

• public: Everyone has access to this feature

5

CS 211 Data Structures Fall 2009

• protected: Features are accessible within methods of the class (or extensions), but not
accessible outside.

We will generally declare instance variables asprotected.

If we declared them aspublic, then another class could access them (or worse yet, modify
them) without going through our class methods.

• private: Features not visible in extensions or outside of this object object.

protected andprivate declarations are used to hide implementation details from clients.

This makes it easier to change our implementation later if needed, without affecting other
classes that make use of our class.

Each instance variable needs a type. They can be one of Java’sprimitive types:

• boolean

• char (16 bit)

• int (32 bit)

• long (64 bit)

• float (32 bit)

• double (64 bit)

They can also be other objects. We will see examples of this shortly.

Next, we need one or moreconstructors. To construct our item, we will need to specify the price
and the size as arguments to the constructor.

public PricedItem(double price, double size) {
this.price = price;
this.size = size;

}

Note that a constructor has the same name as the class, must bedeclared aspublic, and must not
have a return type.

This constructor has two parameters. All parameters in Javaare passed by value. That is, any
assignment to a parameter inside a method body is forgotten when the method returns. They are
basically local variables that are initialized to the valuepassed in the actual parameter by the caller.

Note the use ofthis. to denote the instance variables with the same name as the formal pa-
rameters.this is assumed and is not needed unless there is a conflict such as in our example.
Withoutthis in this case, we would writeprice = price and just set the value of the formal
parameter variable to itself (not especially useful).

6

CS 211 Data Structures Fall 2009

Keyword this can be used in a method to refer to the object executing the method (i.e., the
receiver of the message).

An object can call one of its own methods by writingthis.m(...) or justm(...) (thethis
is assumed).

More interestingly, we can passthis as a parameter to another object. We will see examples later.

Next, an accessor method for the unit price.

public double unitPrice() {
return price/size;

}

Note here that the method is declaredpublic so it can be called from outside the class, and the
return statement. We alternately could have declared a local variable to store the computed unit
price and return that, but it is not necessary.

Finally, a mutator method to change the price of an item:

public void setPrice(double newPrice) {
price = newPrice;

}

We save the new price in our instance variable. That’s all. Note that here, the formal parameter
name is different, sothis. is not necessary.

We also include atoString() method which allows instances of the class to print out theirown
information in a meaningful way.

We have a short driver program to make use of ourPricedItemss inUnitPriceThree.java.

This is another Java application, i.e. a class with amain method.

We create three items to compare, plus an extra variable to refer to the one we determine to be the
best deal. These are local variables, accessible only within themainmethod. Noprivate/protected/public
qualifiers are needed or allowed on local variables.

We first construct the three items.new creates a new instance of a class.

Next, we call aprivate helper methodto find the item among our three that has the lowest price.
This could be done without the helper method, but since we call it twice, it makes sense to place
that code into the helper method.

We’re calling a method of (or sending a message to) ourselves.

We’ll worry about the actual method definition in a minute. For now, let’s look at the printout.

We’re printing out aString. Note that we are performing a+ operation of a string constant and
an object.

A quick aside about JavaStrings.

7

CS 211 Data Structures Fall 2009

• We can define string constants:"This is a string"

• The+ operator is used for concatenation:"This is "+"a string."

• The results of a string + anything is string:"Chapter "+ 2 is the same as"Chapter
2"

• Strings are not a base type, but they’re a bit unusual for some reasons we will see later.

When we try to use an object reference as aString, the object’stoString()method is called.

All objects come with a defaulttoStringmethod, but we have written our own forPricedItems,
that print out some meaningful information about the object.

We then change the price of one of the items and see if that changes the best deal.

In our helper method, we have two local variables. We call methods of thePricedItems passed
in to get their unit prices.

Big disadvantage of this version: we’re stuck with just threeitems. If we want more, we need
to declare more variables, change the number of parameters to the helper method, change the
implementation of the helper method, each time we change thenumber of items.

A second driver program,UnitPrice.java, uses arrays.

We declare the array, here as a local variable. Note the square brackets on the declaration to
indicate that we will have an array ofPricedItem objects.

Note: We never include the size of the array in the declaration

int[10] scores // Illegal in Java!

An array declaration in Java does not create space for the array itself. We need to construct the
array.

Array construction does not construct objects, it only creates the array where we can store refer-
ences toPricedItems. These are initialized tonull – a reference to nothing. We still need to
construct the actual objects in the arrays.

Our helper method now also uses the array. The use of the arrayshould look familiar to everyone.

Arrays are numbered starting at 0, and indices go up toarray.length-1.

8

