
Computer Science 211
Data Structures
Mount Holyoke College
Fall 2009

Topic Notes: Iterators

Interfaces and Abstract classes
Before we discussIterators, we need to think about the design of abstract data types in Java.
So far, we have seen interfaces and regular classes. There isa level between these called anabstract
class.

The abstractions provided by interfaces and abstract classes are important for the development of
reusable and modular software.

We want to be able to definewhat an abstract data type does without committing tohow it does it.

The biggest example we’ve seen so far is aVector. As the user of aVector, we know we can
create them, add, retrieve, remove, and modify elements in them, and query information like their
size. All of these are independent of how theVector is implemented.

This separation of the public interface from the implementation allows programmers to make use of
Vectors without needing to know how things work on the inside. It also allows the implementers
of Vectors to make internal changes without affecting other code thatuses it, so long as the
public interface does not change.

Java has language constructs to support the development of abstract data types.

• Interfaces describe the public functionality of an abstract data type.This includes:

– method signatures

– constants

An interface mayextend anotherinterface.

We have seen and usedinterfaces including things likeComparators andComparables.

• Abstract base classes describe a partial implementation. Anabstract class can define
method bodies for some of the methods required byinterfaces it implements.

This can be useful for:

– methods that can be implemented in terms of other methods

It is possible for a class that extends anabstract class to override methods defined in the
abstract class, in case there is a more efficient way to do some of these things when an
actual implementation is developed.

A frequent use of anabstract class is to “factor out” implementation of methods that
happen to be the same for multiple implementations of an interface.



CS 211 Data Structures Fall 2009

• Full implementations (classes that you can instantiate) may implement interfaces,
and/orextend exactly oneabstract or fully implemented class.

We will see many examples using interfaces and abstract classes throughout the rest of the course.

The text has examples using “generators” and the design of playing card classes to motivate
interfaces andabstract classes, and I encourage you to read them.

However, we consider them in the context ofIterators.

Iterators
How do we “visit” each item in a collection? With aVector, or an array, it’s easy. We can write
afor loop:

public <T> void traverse(Vector<T> v) {
int i;

for (i=0; i<v.size(); i++) {
T visitme = v.get(i);
// do something with visitme

}
}

But imagine if someone has changed the implementation ofVector. It no longer has an array,
but a linked structure.

We will study linked lists very soon, but for now, just noticethat to get access to thenth element,
we need to visit the firstn − 1 elements. If ourVector contained one of these linked structures
instead of an array, our traverse method suddenly becomes very inefficient.

This is not good. What is the complexity ofget()? In order to get the item at positioni, we have
to start at the beginning and we have to follow links until we find the right element.

What we want to do is to use the previous value returned, and take the one pointed to by the list
element we just used to get that previous value. But how? We don’t have that information!

We often need a way of cycling through all of the elements of a data structure. Java and the
structure package provide exactly what we need:java.util.Iterator<E>

A data structure can create an object of typeIterator, which can be used to cycle through the
elements. For example, built-in Java classVector has method:

public Iterator<E> iterator()

that we can print out the elements ofVector<E> v as follows:

2



CS 211 Data Structures Fall 2009

for (Iterator<E> iter=v.iterator(); iter.hasNext(); )
System.out.println(iter.next());

Or in Java 5 and up, if our class implements theIterable interface (which simply requires
the methoditerator) we can use a “for each” loop:

for (E item: v) {
System.out.println(item);

}

See Example:
/home/jteresco/shared/cs211/examples/Iterables

Important Notes:

• Never change the state of a data structure with an active works, or you may end up in an
infinite loop!

• There is also aremove() methos in Java’sIterator interface, but we will ignore that
for now, as not all iterators provide it.

• Iterators guarantee a predictable and consistent order of the elements returned.

The structure package defines an abstract class calledAbstractIterator thatimplements
bothjava.util.Enumeration (an older, iterator-like interface) andjava.util.Iterator.

Notes aboutAbstractIterators:

• it adds two methods that are not part of either enumerations or iterators in Java:

– reset() – start the iteration over without constructing a brand newIterator

– get() – retrieve the “current value” without advancing theIterator

Both of these are declared asabstract methods, meaning that they are essentially adding
to theinterface defined by theAbstractIterator without defining them.

• TheAbstractIterator also providesimplementations of the two methods required by
enumeration. The fact that these are implemented is what requires that we declare this as an
abstract class rather than just anotherinterface. Note that these are also declared
asfinal meaning that classes that extend this class may not overridetheir definitions.
This ensures that theEnumeration andIterator methods of any class thatextends
AbstractIterator must be identical.

3



CS 211 Data Structures Fall 2009

The data structures in the structure package typically return anAbstractIterator rather than
ajava.util.Iterator.

See Structure Source:
/home/jteresco/shared/cs211/src/structure5/VectorIterator.java

See Example:
/home/jteresco/shared/cs211/examples/Iterators

In our next lab, you will develop an unusual kind ofIterator – one that is iterating over a
collection of values that doesn’t actually exist!

4


