Computer Science 211
M C Data Structures

——__ Mount Holyoke College
MOUNT HOLYOKE COLLEGE Fa” 2009

Topic Notes: Complexity and Asymptotic Analysis

Having now studied one major abstract data typeMiet or , we will now step back and look at
important efficiency issues before moving on to more comapdid and interesting structures.

Consider these observations:

e A programmer can use\&ect or in contexts where an array could be used.

e The Vect or hides some of the complexity associated with inserting oroneng values
from the middle of the array, or when the array needs to beedsi

e As a user of a/ect or, these potentially expensive operations all seem verylsimjit's
just a method call.

e But.. programmers who make use of abstract data types needawdre of the actual costs
of the operations and their effect on their program’s efficie

We will now spend some time looking at how Computer Scientis¢gsure the costs associated
with our structures and the operations on those structures.

Costs ofVect or Operations

When consideringyect or implementations, we considered two ways to “grovéct or s that
need to be expanded to accomodate new items.

e When growing by 1 at a time, we saw that to aditems, we would have to copy * 2
items between copies of the array inside ezt or implementation.

¢ When we doubled the size of the array each time it needed tofgmnded, we would have
to copy a total of» — 1 items.

These kinds of differences relate to the tradeoffs made wlbeeloping algorithms and data struc-
tures. We could avoid all of these copies by just allocatilhgige array, larger than we could ever
possibly need, right at the start. That would be very efficiarterms of avoiding the work of
copying the contents of the array, but it is very inefficianterms of memory usage.

This is an example of eme vs. space tradeoff. We can save some time (do less computing) by
using more space (less memory). Or vice versa.

We also observe that the cost to add an elemenM®ecd or is not constant! Usually it is —when
theVect or is already big enough — but in those cases wher&/dw or has to be expanded, it

CS 211 Data Structures Fall 2009

involves copying over all of the elements already inWeet or before adding the new one. This
cost will depend on the number of elements in¥Yeet or at the time.

The cost of inserting or removing an element from the middIbegyinning of avect or always
depends on how many elements are infeet or after the insert/remove point.

Asymptotic Analysis

We want to focus on how Computer Scientists think about thferdiices among the “grow 1 at
a time” or the “grow by some constant ¢ at a time” or a doublindripling (or other constant
multiple) of theVect or ’s array.

There are many ways that we can think about the “cost” of aquaatr computation. The most
important of which are

e computational cost: how many “operations” of some kind does it take to accorhphdat
we are trying to do?

— With theVect or example, we were looking at how many elements need to bedopie
from one array to another during reallocation or reorgaroneof the internal array.

— In other examples, we may wish to count the number of timegyaferation, such as
a multiplication statement, takes place.

e space cost: how much memory do we need to use?

The operations we’ll want to count tend to be those that happside of loops, or more signifi-
cantly, inside of nested loops.

Determining an exact count of operations might be usefubmes circumstances, but we usually
want to look at therends of the operation costs as we deal with larger and larger problisizes.

This allows us to compare algorithms or structures in a gareert very meaningful way without
looking at the relatively insignificant details of an implentation or worrying about characteristics
of the machine we wish to run on.

To do this, we ignore differences in the counts which are @orisand look at an overall trend as
the size of the problem is increased.

For example, we'll treat and 3 as being essentially the same.
Similarly, 5572, 2n* and1000n? are all “pretty much™?.

With more complex expressions, we also say that only the sigsificant term (the one with the
largest exponent) is important when we have different pafrthe computation taking different
amounts of work or space. So if an algorithm uses n? operations, as gets large, the? term
dominates and we ignore the

In general if we have a polynomial of the formgn* + a;n*~! + ... + a;, say it is “pretty much”
n*. We only consider the most significant term.

2

CS 211 Data Structures Fall 2009

We formalize this idea of “pretty much” usiragymptotic or big-O analysis:

Definition: A function f(n) is O(g(n)) if and only if there exist two positive constants&ndn,
such thatf(n)| < c- g(n) for all n > ny.

Equivalently, we can say thgt(n) is O(g(n)) if there is a constant such that for all sufficiently

largen, |§Eg| < e

To satisfy these definitions, we can always choose a realig h(r), perhaps:™”", but as a rule,
we want ag(n) without any constant factor, and as “small” of a function ascan.

So if bothg(n) = n andg(n) = n? are valid choices, we choogén) = n. We can think of
g(n) as an upper bound (within a constant factor) in the long-teetmavior off(n), and in this
exampley is a “tighter bound” tham?.

We also don’t care how big the constant is and how/hjdhas to be. Well, at least not when
determining the complexity. We would care about those irtsigecases when it comes to imple-
mentation or choosing among existing implementations,revae may know that is not going

to be very large in practice, or wherhas to be huge. But for our theoretical analysis, we don't
care. We're interested irelative rates of growth of functions.

The most common “orders of complexity” are

e O(1) — for anyconstant-time operations, such as the assignment of an element irray a
The cost doesn’t depend on the size of the array or the posit&re setting.

e O(logn) — logarithmic factors tend to come into play in “divide and conquer” altfuris.
Example: binary search in an ordered arrayect or of n elements.

e O(n) — linear dependence on the size. This is very common, and exampleglénthe
insertion of a new element at the beginning &fect or containingn elements.

e O(nlogn) — this is just a little bigger tha(n), but definitely bigger. The most famous
examples are divide and conquer sorting algorithms, whiehwil look at soon.

e O(n?) — quadratic. Most naive sorting algorithms ax@(n?). Doubly-nested loops often
lead to this behavior. Example: matrix-matrix addition fox n matrices.

e O(n?) — cubic complexity. Triply nested loops will lead to this behavidr.good example
is matrix-matrix multiplication. We need to dooperations (a dot product) on eachsof
matrix entries.

e O(n*), for constantt — polynomial complexity. Ask grows, the cost of these kinds of
algorithms grows very quickly.

Those of you who have taken or plan to take algorithms andryhemurses know or will
know that Computer Scientists are actually very excited @ fiolynomial time algorithms
for seemingly very difficult problems. In fact, there is a Wdalass of problems (NP) for
which if you could either come up with a polynomial time algiom, no matter how big:
is (as long as it’'s constant), or if you could prove that nahsalgorithm exists, you would
instantly be world famous! At least among us Computer Sgenti

3

CS 211 Data Structures Fall 2009

e O(2") —exponential complexity. Recursive solutions where we are searchingdiores‘best
possible” solution often leads to an exponential algorit@uonstructing a “power set” from a
set ofn elements require®(2™) work. The text mentions checking topological equivalence
of circuits as another problem with exponential complexity

e O(n!) — pretty huge

e O(n™)—even more huge

Suppose we have operations with time comple&itjog n), O(n), O(nlogn), O(n?), andO(2").

And suppose the time to solve a problem of size t. How much time to do problem 10, 100, or
1000 times larger?

Time to Solve Problem

size [n] 10n | 100n | 1000n
O(1) t] ot t t
O(logn) |t | >3t | ~6.5¢ < 10t
O(n) t| 10t 100t 1,000t
O(nlogn) | t | >30t | ~ 650t | < 10,000t
O(n?) t | 100t | 10,000t | 1,000,000t
O(2n) t ~ th ~ thO ~ thOO

Note that the last line depends on the fact that the consgtdntatherwise the times are somewhat
different.

See Example:
/ hone/ jteresco/ shared/ cs211/ exanpl es/ Bi g0 RunTi nes. j ava

Now let’s think about complexity from a different perspeeti

Suppose we get a faster computer, 10, 100, or 1000 timegs faste the one we had, or we're
willing to wait 10, 100, or 1000 times longer to get our sabutif we can solve a larger problem.
How much larger problems can be solved? If original machilosvad solution of problem of size
k in timet, then how big a problem can be solved in some multipl&?of

Problem Size
speed-up | 1x | 10x | 100x | 1000x
O(log n) k 10 100 1000
O(n) k | 10k | 100k | 1,000k
O(nlogn) | k | <10k | < 100k | < 1,000k
O(n?) k| 3k+ | 10k 30K+
0(2") k[k+3 | k+7 | k+10

CS 211 Data Structures Fall 2009

For an algorithm which works i®(1), the table makes no sense - we can solve as large a problem
as we like in the same amount of time. The speed doesn’t malk@yimore likely that we can
solve a larger problem.

See Example:
/[home/jteresco/ shared/ cs211/ exanpl es/ Bi gQ Probl enf5i zes. | ava

Examples

More examples frondava Sructures and elsewhere:

Difference table((n?)

Multiplication table,O(n?)

bui | dVect or using defauladd, O(n)

bui | dVect or usingadd at position 00(n?)

Some algorithms will have varying complexities dependinglee specific input. So we can con-
sider three types of analysis:

e Best case: how fast can an instance be if we get really lucky?

— find an item in the first place we look in a searcth{l)
— get presented with already-sorted input in a sorting procedO(n)
— we don't have to expand\ect or when adding an element at the en@{)

e Worst case: how slow can an instance be if we get really uglick

— find an item in the last place in a linear searcf ()
— get presented with a reverse-sorted input in a sorting pioes-O (n?)
— we have to expand¥ect or to add an element©(n)

e Average case: how will we do on average?

— linear search — equal chance to find it at each spot or not-ai(h)
— presented with reasonably random input to a sorting praeed@(n logn)

— we have to expand ¥ect or sometimes, complexity depends on how we resize and
the pattern of additions

