
Computer Science 211
Data Structures
Mount Holyoke College
Fall 2009

Topic Notes: Complexity and Asymptotic Analysis

Having now studied one major abstract data type, theVector, we will now step back and look at
important efficiency issues before moving on to more complicated and interesting structures.

Consider these observations:

• A programmer can use aVector in contexts where an array could be used.

• The Vector hides some of the complexity associated with inserting or removing values
from the middle of the array, or when the array needs to be resized.

• As a user of aVector, these potentially expensive operations all seem very simple – it’s
just a method call.

• But.. programmers who make use of abstract data types need to be aware of the actual costs
of the operations and their effect on their program’s efficiency.

We will now spend some time looking at how Computer Scientistsmeasure the costs associated
with our structures and the operations on those structures.

Costs ofVector Operations
When consideringVector implementations, we considered two ways to “grow”Vectors that
need to be expanded to accomodate new items.

• When growing by 1 at a time, we saw that to addn items, we would have to copyn ∗ n−1
2

items between copies of the array inside theVector implementation.

• When we doubled the size of the array each time it needed to be expanded, we would have
to copy a total ofn − 1 items.

These kinds of differences relate to the tradeoffs made whendeveloping algorithms and data struc-
tures. We could avoid all of these copies by just allocating ahuge array, larger than we could ever
possibly need, right at the start. That would be very efficient in terms of avoiding the work of
copying the contents of the array, but it is very inefficient in terms of memory usage.

This is an example of atime vs. space tradeoff . We can save some time (do less computing) by
using more space (less memory). Or vice versa.

We also observe that the cost to add an element to aVector is not constant! Usually it is – when
theVector is already big enough – but in those cases where theVector has to be expanded, it

CS 211 Data Structures Fall 2009

involves copying over all of the elements already in theVector before adding the new one. This
cost will depend on the number of elements in theVector at the time.

The cost of inserting or removing an element from the middle or beginning of aVector always
depends on how many elements are in theVector after the insert/remove point.

Asymptotic Analysis
We want to focus on how Computer Scientists think about the differences among the “grow 1 at
a time” or the “grow by some constant c at a time” or a doubling or tripling (or other constant
multiple) of theVector’s array.

There are many ways that we can think about the “cost” of a particular computation. The most
important of which are

• computational cost: how many “operations” of some kind does it take to accomplish what
we are trying to do?

– With theVector example, we were looking at how many elements need to be copied
from one array to another during reallocation or reorganization of the internal array.

– In other examples, we may wish to count the number of times a key operation, such as
a multiplication statement, takes place.

• space cost: how much memory do we need to use?

The operations we’ll want to count tend to be those that happen inside of loops, or more signifi-
cantly, inside of nested loops.

Determining an exact count of operations might be useful in some circumstances, but we usually
want to look at thetrends of the operation costs as we deal with larger and larger problems sizes.

This allows us to compare algorithms or structures in a general but very meaningful way without
looking at the relatively insignificant details of an implementation or worrying about characteristics
of the machine we wish to run on.

To do this, we ignore differences in the counts which are constant and look at an overall trend as
the size of the problem is increased.

For example, we’ll treatn and n
2

as being essentially the same.

Similarly, 1
1000

n2, 2n2 and1000n2 are all “pretty much”n2.

With more complex expressions, we also say that only the mostsignificant term (the one with the
largest exponent) is important when we have different partsof the computation taking different
amounts of work or space. So if an algorithm usesn + n2 operations, asn gets large, then2 term
dominates and we ignore then.

In general if we have a polynomial of the forma0n
k + a1n

k−1 + ... + ak, say it is “pretty much”
nk. We only consider the most significant term.

2

CS 211 Data Structures Fall 2009

We formalize this idea of “pretty much” usingasymptotic or big-O analysis:

Definition: A functionf(n) is O(g(n)) if and only if there exist two positive constantsc andn0

such that|f(n)| ≤ c · g(n) for all n > n0.

Equivalently, we can say thatf(n) is O(g(n)) if there is a constantc such that for all sufficiently
largen, |f(n)

g(n)
| ≤ c.

To satisfy these definitions, we can always choose a really hugeg(n), perhapsnnn

, but as a rule,
we want ag(n) without any constant factor, and as “small” of a function as we can.

So if bothg(n) = n andg(n) = n2 are valid choices, we chooseg(n) = n. We can think of
g(n) as an upper bound (within a constant factor) in the long-termbehavior off(n), and in this
example,n is a “tighter bound” thann2.

We also don’t care how big the constant is and how bign0 has to be. Well, at least not when
determining the complexity. We would care about those in specific cases when it comes to imple-
mentation or choosing among existing implementations, where we may know thatn is not going
to be very large in practice, or whenc has to be huge. But for our theoretical analysis, we don’t
care. We’re interested inrelative rates of growth of functions.

The most common “orders of complexity” are

• O(1) – for anyconstant-time operations, such as the assignment of an element in an array.
The cost doesn’t depend on the size of the array or the position we’re setting.

• O(log n) – logarithmic factors tend to come into play in “divide and conquer” algorithms.
Example: binary search in an ordered array orVector of n elements.

• O(n) – linear dependence on the size. This is very common, and examples include the
insertion of a new element at the beginning of aVector containingn elements.

• O(n log n) – this is just a little bigger thanO(n), but definitely bigger. The most famous
examples are divide and conquer sorting algorithms, which we will look at soon.

• O(n2) – quadratic. Most naive sorting algorithms areO(n2). Doubly-nested loops often
lead to this behavior. Example: matrix-matrix addition forn × n matrices.

• O(n3) – cubic complexity. Triply nested loops will lead to this behavior.A good example
is matrix-matrix multiplication. We need to don operations (a dot product) on each ofn2

matrix entries.

• O(nk), for constantk – polynomial complexity. Ask grows, the cost of these kinds of
algorithms grows very quickly.

Those of you who have taken or plan to take algorithms and theory courses know or will
know that Computer Scientists are actually very excited to find polynomial time algorithms
for seemingly very difficult problems. In fact, there is a whole class of problems (NP) for
which if you could either come up with a polynomial time algorithm, no matter how bigk
is (as long as it’s constant), or if you could prove that no such algorithm exists, you would
instantly be world famous! At least among us Computer Scientists.

3

CS 211 Data Structures Fall 2009

• O(2n) – exponential complexity. Recursive solutions where we are searching for some “best
possible” solution often leads to an exponential algorithm. Constructing a “power set” from a
set ofn elements requiresO(2n) work. The text mentions checking topological equivalence
of circuits as another problem with exponential complexity.

• O(n!) – pretty huge

• O(nn) – even more huge

Suppose we have operations with time complexityO(log n), O(n), O(n log n), O(n2), andO(2n).

And suppose the time to solve a problem of sizen is t. How much time to do problem 10, 100, or
1000 times larger?

Time to Solve Problem
size n 10n 100n 1000n

O(1) t t t t

O(log n) t > 3t ∼ 6.5t < 10t
O(n) t 10t 100t 1, 000t
O(n log n) t > 30t ∼ 650t < 10, 000t
O(n2) t 100t 10, 000t 1, 000, 000t
O(2n) t ∼ t10 ∼ t100 ∼ t1000

Note that the last line depends on the fact that the constant is 1, otherwise the times are somewhat
different.

See Example:
/home/jteresco/shared/cs211/examples/BigO/RunTimes.java

Now let’s think about complexity from a different perspective.

Suppose we get a faster computer, 10, 100, or 1000 times faster than the one we had, or we’re
willing to wait 10, 100, or 1000 times longer to get our solution if we can solve a larger problem.
How much larger problems can be solved? If original machine allowed solution of problem of size
k in time t, then how big a problem can be solved in some multiple oft?

Problem Size
speed-up 1x 10x 100x 1000x

O(log n) k k10 k100 k1000

O(n) k 10k 100k 1, 000k
O(n log n) k < 10k < 100k < 1, 000k
O(n2) k 3k+ 10k 30k+
O(2n) k k + 3 k + 7 k + 10

4

CS 211 Data Structures Fall 2009

For an algorithm which works inO(1), the table makes no sense - we can solve as large a problem
as we like in the same amount of time. The speed doesn’t make itany more likely that we can
solve a larger problem.

See Example:
/home/jteresco/shared/cs211/examples/BigO/ProblemSizes.java

Examples

More examples fromJava Structures and elsewhere:

• Difference table,O(n2)

• Multiplication table,O(n2)

• buildVector using defaultadd, O(n)

• buildVector usingadd at position 0,O(n2)

Some algorithms will have varying complexities depending on the specific input. So we can con-
sider three types of analysis:

• Best case: how fast can an instance be if we get really lucky?

– find an item in the first place we look in a search –O(1)

– get presented with already-sorted input in a sorting procedure –O(n)

– we don’t have to expand aVector when adding an element at the end –O(1)

• Worst case: how slow can an instance be if we get really unlucky?

– find an item in the last place in a linear search –O(n)

– get presented with a reverse-sorted input in a sorting procedure –O(n2)

– we have to expand aVector to add an element –O(n)

• Average case: how will we do on average?

– linear search – equal chance to find it at each spot or not at all– O(n)

– presented with reasonably random input to a sorting procedure –O(n log n)

– we have to expand aVector sometimes, complexity depends on how we resize and
the pattern of additions

5

