
Computer Science 211
Data Structures
Mount Holyoke College
Fall 2009

Topic Notes: Associations

Let’s consider a very simple example of a data structure called anAssociation.

As the name suggests, anAssociation is a way to associate pairs of objects, one of which is
thekey and one of which is thevalue. Once created, the key cannot be changed, but the value
can.

Unlike the structures we have seen so far, this is a “general purpose” structure.

• What should such a structure look like?

• What instance variables will it need?

• What constructors should be provided?

• What methods will it need?

As we have seen, in Java, all objects that are not primitive types are extensions of the class
java.lang.Object, or justObject. This is very convenient when developing data struc-
tures, since we can develop our structures to hold references toObjects and then use them to
store instances of any Java class. This includesStrings.

Note: very soon we will look at the idea ofgenerics, which was introduced into Java a few years
ago and to our textbook and the structure package shortly after. But for the moment, we will make
use of the fact that all Java objects are instances of classObject for our data structures.

The text has an example that usesAssociations to associate words with their “pig latin” equiva-
lents. We will use Associations in a similar example that associates magic spells with a description
of their effect. The name of the spell will be the key, and its effect will be the value.

See Example:
/home/jteresco/shared/cs211/examples/Spells

If we do a great job implementing anAssociation for this program, we have a good chance to
be able to use it again. Thisreusability is a major focus of this course.

Implementation in Structure
The structure package includes anAssociation class that we can use for this example.

This class is defined as part ofpackage structure, meaning it can accessprotected
entries of other classes in the structure, and those classescan accessclass Association’s
protected items.

CS 211 Data Structures Fall 2009

Pre and Postconditions

The structure package uses an extension to Javadoc that provides two new fields:@pre and
@post. These arepreconditions andpostconditions for the methods.

These comments set out a contract for the use of a particular method. For instance, see the follow-
ing code:

/**
@pre 0 <= index < this.length()
@post returns character at "index" position

(starting count from 0) in this

**/
public char charAt(int index)
{...}

The contract expressed by the pre and postconditions is thatthe implementer promised that the
postcondition will be true after executing the method, as long as the user promises that the precon-
dition will be true when it is called. Thus both the caller andthe implementer have responsibilities
under the contract.

For the above example, the user is required to specify anindex which is legal for the string
(between 0 andmyString.length() - 1, inclusive), and if the user meets that commitment,
the implementation promises to return the character in theindex position ofmyString.

Assertions

It is useful having these as comments, but often it is much more useful to have them checked at
run-time, as if any fail, it is indication of an error in the program.

Moreover, the location of the failure is more likely to provide a pointer to the source of the error
than just getting a wrong answer (or system crash).

Thus, there is a classAssert in the structure package which contains methods to check these at
run-time.

Thus if we were writing the code for aString’s charAt method above, we could write:

public char charAt(int index) {
Assert.pre(0 <= index && index < length(),

"Index out of bounds for string");
...
Assert.post(..., "post condition error");

}

If either of the boolean conditions is false at the time they are executed then the system will raise
an exception (i.e., crash) and print a message telling that apre/postcondition failed and give the
error message.

2

CS 211 Data Structures Fall 2009

Sometimes pre and postconditions can’t be expressed concisely or efficiently (e.g., how do you
say “the array is sorted”), so we may not be able to enforce these in the code using theAssert
methods.

Another potential pitfall when enforcing pre and postconditions with assertions, is that you may
be tempted to call the routine recursively (and get yourselfinto non-terminating computation) in
checking pre or postconditions! In these cases, the comments will have to suffice.

Aside: Eiffel is an object-oriented programming language with built-in support for pre and post-
conditions. It also has compiler switches which can be turned on and off to determine whether
or not pre and postconditions are checked during a program’sexecution (the default is that only
preconditions are checked).

We will expect all methods in the classes you implement here to be decorated with Javadoc-style
pre and postconditions, and checks using theAssert methods where it makes sense.

Recent versions of Java provide a keywordassert that behaves similarly to the structure pack-
age’sclass Assert. More on that later in the semester.

Back to Association.java

The actual implementation of theAssociation class is pretty straightforward. A couple of
quick notes:

• We require akey to construct a newAssociation, but thevalue is optional. If not
provided, thevalue part defaults tonull.

• Two Associations are considered equal (by theequals method) if theirkeys are the
same, regardless of theirvalues.

• We have anaccessor (“getter”) for thekey (getKey) but no mutator (“setter”). Once
created, thekey of anAssociation may not be modified.

• For thevalue, we have both an accessor (getValue) and a mutator (setValue).

3

