
Computer Science 210
Data Structures
Siena College
Fall 2019

Topic Notes: Two-Dimensional Arrays

Two-Dimensional Arrays
We can create arrays to hold objects of any type, either basic data types like int and double, or
instances of objects.

Nothing stops us from defining arrays of arrays. To declare an array, each of whose elements is an
array of int:

int[][] twoDArray;

While it is normally written without parentheses, we can think of the above declaration as defining
twoDArray as having type (int []) []. Thus each element of twoDArray is an array of
ints.

Despite the fact that Java will treat this as an array of arrays, we usually think about this as a two-
dimensional array, with the elements arranged in a two-dimensional table so that twoDArray[i][j]
can be seen as the element in the ith row and jth column. For example here is the layout for a two-
dimensional array a with 6 rows (numbered 0 to 5) and 4 columns:

0 1 2 3

0 a[0][0] a[0][1] a[0][2] a[0][3]
1 a[1][0] a[1][1] a[1][2] a[1][3]
2 a[2][0] a[2][1] a[2][2] a[2][3]
3 a[3][0] a[3][1] a[3][2] a[3][3]
4 a[4][0] a[4][1] a[4][2] a[4][3]
5 a[5][0] a[5][1] a[5][2] a[5][3]

Viewed in this way, our two-dimensional array is a grid, much like a map or a spreadsheet. This is
a natural way to store things like tables of data or matrices.

We access elements of two-dimensional arrays in a manner similar to that used for one dimensional
arrays, except that we must provide both the row and column to access an element, giving the row
number first.

We create a two-dimensional array by providing the number of rows and columns. Thus we can
create the two-dimensional array above by writing:

int[][] a = new int[6][4];



CSIS 210 Data Structures Fall 2019

(Though as good programmers, you would define constants for the number of rows and the number
of columns.)

A nested for loop is the most common way to access or update the elements of a two-dimensional
array. One loop walks through the rows and the other walks through the columns. For example, if
we wanted to assign a unique number to each cell of our two-dimensional array, we could do the
following:

for (int row = 0; row < 6; row++) {
for (int col = 0; col < 4; col++) {

a[row][col] = 4*row + col + 1;
}

}

This assigns the numbers 1 through 24 to the elements of array a. The array is filled by assigning
values to the elements in the first row, then the second row, etc. and results in:

1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16
17 18 19 20
21 22 23 24

And if we wanted to print the above, we can write a loop:

for (int row = 0; row < 6; row++) {
for (int col = 0; col < 4; col++) {

System.out.print(a[row][col] + " ");
}
System.out.println();

}

You could modify the above to be slightly more interesting by computing a multiplication table.

We could just as well process all the elements of column 0 first, then all of column 1, etc., by
swapping the order of our loops:

for (int col = 0; col < 4; col++)
for (int row = 0; row < 6; row++)

...

2



CSIS 210 Data Structures Fall 2019

For the most part, it doesn’t matter which order you choose, though for large arrays it is generally
a good idea to traverse the array in the same order that your programming language will store
the values in memory. For Java (and C, C++), the data is stored by rows, known as row major
order. However, an two-dimensional array in FORTRAN is stored in column major order. You
will almost certainly see this again if you go on and take courses like Computer Organization or
Operating Systems.

Two-Dimensional Matrices
A very common use of two-dimensional arrays is the representation of matrices. Starting in lab,
we will look at an example of a class that represents two-dimensional square matrices and provides
some basic operations on them.

3


