
Computer Science 210
Data Structures
Siena College
Fall 2018

Topic Notes: Ordered Structures

We have considered special-purpose linear structures that are essentially restricted versions of the
more general structures we considered earlier.

While we implemented our stacks and queues using arrays and vectors and linked lists, the in-
terfaces to these linear structures limited access to the internal representation, and allowed us to
choose an appropriate way to orient the data within the structures to make the operations in the
restricted interface as efficient as possible. Moreover, this restriction meant we, as designers and
authors of the data structure, could explicitly prevent a user of the structure from accessing or
modifying it in an unexpected way.

Ordered Structure Concept
Let’s think back to our table of efficiencies of our list structures. In all cases, remember what
entries looked like for the contains method:

• O(1) in the best case, when we happen to find what we’re looking for right away

• O(n) in the worst case, when we either find what we’re looking for at the end, or the item is
not there at all

This makes sense, since in each of these cases we must employ a linear search, and that has the
complexities above, regardless of the data structure that stores the values.

But we have also seen that there is a more efficient way to search. If the data can be sorted, we can
use a binary search, and achieve a worst case of O(log n) to find (or not) the element we’re looking
for.

So now, we consider structures that have a different kind of restriction placed on them to permit a
binary search: that their contents are maintained in some order.

Structures that support more efficient searching are a theme for a few of the data structures that
remain for us to study this semester.

In addition to having the potential to support a binary search, these ordered structures also make it
easy (sometimes even trivial) to traverse their contents in sorted order.

The restriction that contents are maintained in order means the only add operation would add
wherever necessary to maintain ordering, but such structures could support remove by value
operations (but not likely a get by index and definitely not a set by index).

These can be implemented using the structures we know so well, but again we will want to restrict
the interface so as to guarantee that the ordered nature of the structures is not violated.



CSIS 210 Data Structures Fall 2018

Consider also how structures restricted in this way can help avoid errors. With linear structures, the
restrictions can help a programmer ensure that data that is intended to be accessed only in LIFO
or FIFO ordering is only accessed that way – any attempt to use other operations would trigger an
error at compile time. With an ordered structure, errors can also be avoided. Sure, a program could
use an ArrayList or linked list and it would be up to anyone developing or modifying that code
to remember that the contents of the structure must be kept ordered any time it is modified. By
using a restricted ordered structure, it would not be possible to modify the structure in a way that
breaks that ordering.

Determining an Ordering
These is one additional complication here, which can also be seen as a further restriction: if we are
going to order the objects in our structures, we need a mechanism for comparing them.

We have seen approaches that allow comparison of Java objects: We could require that the objects
implement the Comparable interface, or we could require that an appropriate Comparator
class be provided for the objects.

Recall that Comparable is a Java interface that requires a method:

public int compareTo(T item);

and Comparator is a Java interface that requires a method:

public int compare(T item1, T item2);

Let’s consider how the Comparable interface and Comparator objects might be of use in
defining objects that can be placed into an ordered structure. In particular, let’s begin by consider-
ing a Comparable Association.

It is an extension of the Association class from way back that also implements Comparable,
therefore adding a compareTo method. Recall that Associations are key/value pairs. For a
ComparableAssociation, we require that the key be Comparable, so the ordering of the
ComparableAssociation is inherited from the ordering of the Comparable keys.

See Structure Source:
structure5/ComparableAssociation.java

These ComparableAssociations may be compared and placed in an ordered structure.

Naive Implementations of Ordered Structures
We will initially consider implementations of two ordered structures, one based on a Vector
and the other on a linked list. For simplicity, these structures require that only objects of a
Comparable type be stored, but we will see in the list version that an option to support a
Comparator is also possible.

2



CSIS 210 Data Structures Fall 2018

Ordered Vectors
We’ll first consider an OrderedVector of Comparable objects.

As we did with the linear structures, we encapsulate the underlying data type. A Vector is used
as the underlying representation, but we restrict the interface to enforce that our structure remain
ordered.

See Structure Source:
structure5/OrderedVector.java

What are the complexities of the methods here?

• contains can make use of a binary search! Well, that was the whole point, wasn’t it? But
this is good! We now have a structure with an O(log n) contains method.

• add now requires a search for the proper position at which to add. We use an O(log n)
binary search. Plus there is a worst-case O(n) cost to move everything up beyond the add
position.

• remove can use a binary search as well, again O(log n) to find the position of the item to
be removed, followed by a worst-case O(n) cost to shift down the contents of the Vector.

Ordered Lists
Which of our list implementations make sense for our list-based OrderedStructure?

Consider the operations allowed. We need only search from the beginning and add/remove values
at arbitrary positions. The doubly linked and circular lists are no better at these than a singly linked
list, so it makes sense to go with the simplest one that works.

We could implement this with a protected SinglyLinkedList, just as we did with the pro-
tected Vector inside of our OrderedVector.

But think about how we’d have to do for add. We would need to create an iterator over the list to
compare the object we’re adding with each object in the list. Then we’d know where to add it. But
adding it would require a new search all the way from the beginning! That’s inefficient.

So we want to break open the SinglyLinkedList and use some of its internals without using
the whole thing. Essentially our OrderedList will implement its own list by using the same
Node structure that is used in SinglyLinkedList (which is the same as our SimpleListNodes
we know well). But we’ll manage the details differently in OrderedList. Fortunately, we have
a very restrictive interface, so there are not many methods to worry about.

So we’ll have a counted singly linked list that keeps itself ordered.

See Structure Source:
structure5/OrderedList.java

3



CSIS 210 Data Structures Fall 2018

Unfortunately, our important operations are still O(n). Our linked list does not allow direct access
to arbitrary elements, forcing us to settle for a linear search when finding the correct position
for an object being added or removed or searched. Certainly not the most useful structure we’ve
developed.

Adding an optional Comparartor
An additional feature of this implementation is that it allows use of a Comparator for alternate
orderings of our data. In fact, it does in a way that allows it to work without modification if you
wish to order Comparables by their “natural” ordering, but will allowing alternate orderings
using a Comparator.

What was added to or modified in the ordered structures to support this?

1. An instance variable to store the comparator. The very odd syntax for the type parameter
here means that we can specify a Comparator for anything that E is – any of the classes it
extends or interfaces it implements. So long as it can compare objects of type E.

2. Add a new constructor that takes an appropriate Comparator as its parameter.

3. Modify the default constructor to create and use a NaturalComparator – a simple
Comparator that just uses the required compareTo method of our Comparable ob-
jects.

4. Change the compareTo calls to compare calls.

This structure is actually a bit overrestrictive. We require that the elements we add extend Comparable,
even though we’ll only use their compareTo method when using the NaturalComparator.

Doing Better
We can do better for ordered structures by moving away from our arrays, vectors, and linked lists.
Back at this topic soon once we have started studying data structures with branches.

4


