
Computer Science 210
Data Structures
Siena College

Fall 2016

Topic Notes: Ordered Structures

We have considered two special-purpose data types, stacks and queues, that are essentially re-

stricted versions of the more general structures we considered earlier.

While we implemented our stacks and queues using arrays and vectors and linked lists, the in-

terfaces to these linear structures limited access to the internal representation, and allowed us to

choose an appropriate way to orient the data within the structures to make the operations in the

restricted interface as efficient as possible. Moreover, this restriction meant we, as designers and

authors of the data structure, could explicitly prevent a user of the structure from accessing or

modifying it in an unexpected way.

Ordered Structure Concept

Now, we consider structures that have another restriction placed on them: that their contents are

maintained in some order.

These ordered structures allow us to search among their contents efficiently, or to process the

contents in a particular order.

These can be implemented using the structures we know so well, but again we will want to restrict

the interface so as to guarantee that the ordered nature of the structures is not violated.

These is one additional complication here: if we are going to order the objects in our structures,

we need a mechanism for comparing them.

Earler, we saw two approaches to allow comparison of Java objects: We could require that the ob-

jects implement the Comparable interface, or we could require that an appropriate Comparator

class be provided for the objects.

Recall that Comparable is a Java interface that requires a method:

public int compareTo(T item);

and Comparator is a Java interface that requires a method:

public int compare(T item1, T item2);

Let’s consider how the Comparable interface and Comparator objects might be of use in

defining objects that can be placed into an ordered structure. In particular, let’s begin by consider-

ing a Comparable Association.



CSIS 210 Data Structures Fall 2016

It is an extension of the Association class from way back that also implements Comparable,

therefore adding a compareTo method. Recall that Associations are key/value pairs. For a

ComparableAssociation, we require that the key be Comparable, so the ordering of the

ComparableAssociation is inherited from the ordering of the Comparable keys.

See Structure Source:

structure5/ComparableAssociation.java

These ComparableAssociations may be compared and placed in an ordered structure.

Implementations

We will implement two ordered structures, one based on a Vector and the other on a linked list.

In structure, each of these implements an interface called OrderedStructure.

See Structure Source:

structure5/OrderedStructure.java

It’s an empty interface! What good is this? All it does it defines a type. But that means we can

use that type in places where we want to require one of our ordered structures, but do not want to

commit to a particular implementation (as when we wanted a List but did not want to commit to

a specific one).

But since it does extend the Stucture interface, it requires our basic set of operations.

See Structure Source:

structure5/Structure.java

But in this case, we (as implementers) will enforce the restriction on implementations that the

contents will be stored in order.

Ordered Vectors

We’ll first consider an OrderedVector of Comparable objects.

As we did with the linear structures, we don’t extend the underlying data type, but rather encapsu-

late it.

So use a regular Vector as the underlying representation, but we restrict the interface to enforce

that our structure remain ordered.

See Structure Source:

structure5/OrderedVector.java

What are the complexities of the methods here?

• contains can make use of a binary search! Well, that was the whole point, wasn’t it? But

this is good! We now have a structure with an O(log n) contains method.

• add now requires a search for the proper position at which to add. We use an O(log n)

2



CSIS 210 Data Structures Fall 2016

binary search. Plus there is a worst-case O(n) cost to move everything up beyond the add

position.

• remove can use a binary search as well, again O(log n) to find the position of the item to

be removed, followed by a worst-case O(n) cost to shift down the contents of the Vector.

An important question here is why did we not extend Vector instead of having one protected

inside the class? Our answer is that the public interface to the Vector class is not restrictive

enough! Since the OrderedVector would also be a Vector with all of its public methods,

users could modify the structure with general-purpose Vector operators and break the ordering!

Again, we need to restrict the functionality to ensure that our structure functions correctly and that

it can be made to perform its public functionality more efficiently.

Ordered Lists

Which of our list implementations make sense for our list-based OrderedStructure?

Consider the operations allowed. We need only search from the beginning and add/remove values

at arbitrary positions. The doubly linked and circular lists are no better at these than a singly linked

list, so it makes sense to go with the simplest one that works.

We could implement this with a protected SinglyLinkedList, just as we did with the pro-

tected Vector inside of our OrderedVector.

But think about how we’d have to do for add. We would need to create an iterator over the list to

compare the object we’re adding with each object in the list. Then we’d know where to add it. But

adding it would require a new search all the way from the beginning! That’s inefficient.

So we want to break open the SinglyLinkedList and use some of its internals without using

the whole thing. Essentially our OrderedList will implement its own list by using the same

Node structure that is used in SinglyLinkedList. But we’ll manage the details differently in

OrderedList. Fortunately, we have a very restrictive interface, so there are not many methods

to worry about.

So we’ll have a counted singly linked list that keeps itself ordered.

See Structure Source:

structure5/OrderedList.java

Unfortunately, our important operations are still O(n). Our linked list does not allow direct access

to arbitrary elements, forcing us to settle for a linear search when finding the correct position for

an object being added or removed or searched.

Adding an optional Comparartor

An additional feature of this implementation is that it allows use of a Comparator for alternate

orderings of our data. In fact, it does in a way that allows it to work without modification if you

wish to order Comparables by their “natural” ordering, but will allowing alternate orderings

3



CSIS 210 Data Structures Fall 2016

using a Comparator.

What was added to or modified in the ordered structures to support this?

1. An instance variable to store the comparator. The very odd syntax for the type parameter

here means that we can specify a Comparator for anything that E is – any of the classes it

extends or interfaces it implements. So long as it can compare objects of type E.

2. Add a new constructor that takes an appropriate Comparator as its parameter.

3. Modify the default constructor to create and use a NaturalComparator – a simple

Comparator that just uses the required compareTo method of our Comparable ob-

jects.

4. Change the compareTo calls to compare calls.

Our structure is actually a bit overrestrictive. We require that the elements we add extend Comparable,

even though we’ll only use their compareTo method when using the NaturalComparator.

4


