
Computer Science 210
Data Structures
Siena College

Fall 2016

Topic Notes: Classes

So far, our example programs have operated on data (i.e., variables and parameters) that we can

categorize in just two ways:

• primitive types, such as int, double, char

• object types, such as String, Scanner, Random, DecimalFormat

We next focus on these object types a bit more. In particular, we will starting introducing our own

object types into our programs.

Objects and Classes

We already looked at one way to have a single entity in Java refer to multiple items: the array.

Arrays are very convenient for many purposes, but they have some important restrictions:

1. all of the items in the array must be of the datatype declared in the array’s declaration and

construction

2. we can only refer to array elements by their subscript (or index), which must be a number

from 0 to n− 1 for an array of length n

Among other benefits, classes allow us to overcome both of these restrictions.

Every object in a Java program is an entity that can contain both fields, or instance variables –

which are in many ways like the local variables we’ve been using in our programs, and methods

(or member methods), which operate on the data in those fields.

The idea of an object is central to the object-oriented programming paradigm, which has been very

popular since being introduced a few decades ago.

The idea is that we write program components, called classes, which represent templates for the

objects we wish to represent in our program. For each object, we include fields that are used to

represent the state of the object and methods that allow that state to be queried or modified.

A text I used previously includes an example of an alarm clock. They came up with a list of fields

that can be used to describe the state of an alarm clock. It is similar to this list:

• the current hour (0-23)

CSIS 210 Data Structures Fall 2016

• the current minute (0-59)

• the current second (0-59)

• the alarm hour (0-23)

• the alarm minute (0-59)

• the alarm status (on or off)

And some methods that can be used to modify the state of the alarm clock:

• set current time

• set alarm time

• disable alarm

• enable alarm

• stop currently sounding alarm

We might also consider some methods to query the current state of the alarm:

• get current time

• get alarm time

• get alarm status (on or off)

And then the alarm clock might have some other things it does “on its own” – its state changes as

the time proceeds:

• increment time by 1 second

• start sounding alarm

In Java, the functionality of an object is described in a class. We have been writing classes so far

this semester as containers for our main, and in some cases, a few other methods. This is just a

small fraction of what a Java class can be used to do.

We look at a mechanism to achieve this by a simpler example. Consider this example, which is

written with all code in its main method.

See Example: RatiosNoClass

This program maintains information about ratios of integer values. We create two ratios, each rep-

resented by 2 int variables, and print them, modify them, and compute their decimal equivalents.

2

CSIS 210 Data Structures Fall 2016

But with a class that represents a Ratio object, we can encapsulate the numbers (the numerator

and denominator) into fields, and provide methods to construct (the constructor(s)), access (the

accessor methods), and modify (the mutator methods) the fields.

See this example and the extensive comments within for details.

See Example: Ratios

A Memory Diagram

It is important at this point to start thinking carefully about exactly how and where Java allocates

memory for the variables in our programs. Throughout the semester, we will make memory dia-

grams of varying detail and complexity. We begin by making one for the example above.

When constructing a memory diagram for a Java application (i.e., a Java program we launch by

calling its main method), we start by allocating memory for main’s parameter and any local

variables. We will think more carefully soon about the fact that this memory is allocated on the

call stack, but for now, we’ll just draw it as a box labeled with the names of any parameters and

local variables for our method. In this case:

args is the one parameter to main, and that gets initialized with a reference to any command-

line parameters we pass to our program. Since in this case, we aren’t expecting any, we will just

represent those as the empty box. The main method also has two local variables, a and b, each of

which is a reference to a Ratio object. At this point in our diagram construction, these have not

yet been given values. Java does not provide local variables with any default values, so we leave

those boxes blank.

Now, we’re ready to look at the actual execution of the main method. The first line:

Ratio a = new Ratio(4, 6);

causes many things to occur, and we will consider many of them in some detail, updating our

memory diagram for each step that affects it.

That line is an object construction and an assignment of a reference to that new object to a local

variable. Before anything can happen, Java needs to find the Ratio class, and locate the con-

structor that takes two int parameters. Once it locates the class, it will allocate memory for the

instance variables of the Ratio class from heap memory.

3

CSIS 210 Data Structures Fall 2016

Our Ratio class has two instance variables of type int, named numerator and denominator.

Java automatically initializes all instance variables with zero, false, or null values, as appro-

priate. So our int variables get 0.

Next, Java sets up the call to the constructor, which acts much like a method. We get a chunk

of memory (this time stack memory) large enough to hold the parameters to the constructor, any

local variables in the constructor, and the special this reference that will tie this constructor call

to its object. The formal parameters num and den have their values initialized using the actual

parameter values from the construction (in this case, 4 and 6). The this reference is initialized to

point to the instance variables we just created in the previous step.

Now we are ready to execute the body of the constructor. This one is pretty straightforward, it’s just

two assignment statements. But even there, things are not trivial. There are four names involved

in the two assignment statements, and Java needs to figure out which of the boxes in our diagram

have the values we want to read or are the locations we want to write in each. The process is

straightforward. It first looks in its list of parameters and local variables for a matching name.

If none is found, it follows its this reference to look for a matching instance variable. In our

case, num and den are found in the parameters/locals list in stack memory, and numerator and

denominator are found by following the this reference to the instance variable list.

Once these two assignment statements are executed, our instance variables now have taken on the

values of the parameters.

4

CSIS 210 Data Structures Fall 2016

When the constructor returns, two things happen: its memory for parameters and local variables

goes away, and it returns the reference to the new object’s instance variables. In our case, we’re

storing that reference in main’s local variable a.

The same set of steps happens when we construct the second Ratio and store it in b.

5

CSIS 210 Data Structures Fall 2016

Next up in the main method is

System.out.println("Ratio a is " + a);

As you might recall, this results in a call to a’s toString method. Any method call requires Java

to allocate memory on the stack for its parameters, local variables, and in the case of non-static

methods, the this reference to the object’s instance variables. Since Ratio’s toString

method has no parameters or local variables, it’s just this.

6

CSIS 210 Data Structures Fall 2016

An important thing to notice here is that toString’s this reference is initialized to the object

reference, in this case, a.

When the line printing a using its toString method implicitly completes, its chunk of memory

on the stack is deallocated, and we do the same things for the explicit call to b’s toString

method.

Moving things along a little more quickly, since it’s the same idea as what we just saw, the calls to

getDecimalValue on each of a and b would also result in chunks of memory on the stack for

each of their calls.

7

CSIS 210 Data Structures Fall 2016

A bit more interesting is the call to

a.setNumerator(1);

Again, it’s a method call, but this one does have a parameter. To set up the method call:

8

CSIS 210 Data Structures Fall 2016

We have a slot for the formal parameter num, initialized to the value of the actual parameter, 1.

Then the this reference, initialized to the object, which is the thing that comes before the . in

the call.

Now the setNumerator method is ready to execute, and it changes the value of a’s numerator.

The same process applies to the next call.

b.setDenominator(10);

The setup:

9

CSIS 210 Data Structures Fall 2016

And when the method executes, b’s denominator is updated. Shown below is the state of

memory just before setDenominator.

Object Orientation

The key to successful object-oriented programming is to identify and design the objects in the

problem. Looking first at the ratios example, it is essential to notice that the Ratio class defines

10

CSIS 210 Data Structures Fall 2016

the data and operations related to a single ratio. It does not know or care how or why the ratios are

being used. It simply defines a ratio and methods that operate on one. It is up to other code – in

this case the main method in the Ratios class – to determine when and why Ratio objects are

instantiated and how they are used.

One popular metaphor for a class definition is to think of it as a cookie cutter. I prefer another: a

file cabinet of forms and instructions. Think of the class as a master copy of a form that contains

information about an object, how to create one, and instructions for how the object works. Each

time we need a new instance of the object, we make a copy of that form and use it to keep track of

the details of that object.

As a further example, let’s consider a program intended to keep track of a series of items purchased

in a store. Each item has a name, a unit price, and a quantity purchased by a customer. Our program

will read in a series of these items and track the most expensive, least expensive, the largest quantity

purchased, and the largest total cost (unit price times quantity). For simplicity, we will break any

ties by the first encountered. So if the most expensive item cost $9.50 but there are two different

items each priced at $9.50, we will keep the first and ignore the second.

We will make use of a class that represents one of these items. We will then be able to create an

instance of this class for each such item. We can add accessor methods to retrieve the information

we need to implement our program.

See Example: PurchaseTracker

One additional item here is the use of a class variable in the PurchasedItem class. The

DecimalFormat object we declare and construct with the static qualifier is shared among

all instances of the class, no matter how many we create.

General Purpose Classes

The few custom classes we have seen so far have been developed for very specific situations. The

Ratio class stores a ratio, but isn’t useful for much else. The PurchasedItem class in the

purchase tracker example contains a String, a double, and an int, all used for very specific

purposes.

Part of a good object-oriented design is to find places where we can write some software (in our

case, a Java class) that might be useful in situations beyond the one at hand. It turns out there are

many simple and no-so-simple structures that arise in many contexts, and rather than developing a

new Java class each time we need one, we strive to re-use ones that already exist. Or if one does

not exist, develop one that will satisfy needs of future programmers as well.

Let’s consider one common data structure: the pair. To begin, let’s assume that we want a pair of

floating-point values. These might be used to represent a coordinate in two dimensions, a latitude

and longitude, or perhaps even a pair of corresponding data values from a science experiment such

as an object’s volume at a given temperature.

Without knowing the reason someone might want to use our pair of double values, we can write

a class that encapsulates them:

11

CSIS 210 Data Structures Fall 2016

See Example: DoublePair

Notice that we have only very general-purpose code here. While it might make sense, for example,

to add up the two numbers in the pair in some cases, we don’t add that to our general purpose class.

Before we move on, we notice a couple of other items of interest.

• We provide a method equals that returns whether this DoublePair is the same as an-

other DoublePair. equals is another of those methods (like toString) that are pro-

vided by Java for any object type. But like toString, we normally will want to provide

our own equals method that determines the equality or equivalence of two objects of

the class we are defining in some meaningful way. Here, we define equals so that two

DoublePair objects are equal only if each of the numbers this one contains are equal to

the corresponding numbers in the other.

Note also that the method signature of the equals method includes a formal parameter of

type Object, even though we know that for this to make any sense, it should be passed

as an object of type DoublePair. It is necessary to define it with Object, however, as

equals methods must have this same method signature for all classes to conform to Java’s

rules.

The main complication of this fact is that we need to tell Java that we expect this Object to

be a DoublePair, so we can make the meaningful comparison. The first line of the body

of our equals method is a cast, which tells Java that the object we passed in as o should

subsequently be treated as a DoublePair called other. The main drawback of this is that

if we pass in some other type of object, the program will crash when the cast is attempted,

with a ClassCastException. Uncomment the last line of the provided main method

to see this happen.

• We provide a main method that tests our class. This method would not be used by a “user”

of this class – it is provided only as a convenient way to test the class. It would work exactly

the same way if we placed the main into a separate class.

Making it More General Purpose

While it’s nice to have a pair of double values, what if we need a pair of ints, or Strings,

or PurchasedItems? Or maybe a pair where the “first” is a String and the “second” is a

double?

Java’s Object class, which we just saw as a parameter to the equals method, provides a mech-

anism we can use for this.

See Example: ObjectPair

The code is nearly identical, except now our “first” and “second” can be any object type we wish.

In the main method, we actually pass primitive types as well, but that is being facilitated by Java’s

autoboxing functionality, supported by Java versions 1.5 and up.

12

CSIS 210 Data Structures Fall 2016

Since primitive types, like int, double, and boolean are not objects, they do no qualify as a

valid item to be stored in an Object variable. But, since we often do want to treat such values

as objects, Java provides a set of classes, including Integer, Double, and Boolean, that are

objects whose sole purpose is to include one int, double, or boolean, respectively. In old

Java versions, we would have had to create such objects explicity (e.g., “new Double(9.1)”)

but the Java compiler will now insert code to do this for us automatically.

Making it Generic

Another relatively feature of Java, also introduced in Java 1.5, is to allow class definitions to include

generic, or parameterized data types. This means that we can write a definition of the structure

using data types that are unspecified (much like the value of a method parameter is unspecified)

until we create an instance of the class. But once we “bind” to a type, we have to stick with that

type (unlike how our ObjectPair’s “first” was initially a String and later a Double).

Here is the generic version of our pair class:

See Example: GenericPair

The important feature here is the use of type parameters to specify the actual data types we want

to use for the first and second entries of our pair. These are specified throughout in this example as

U and V. We assume (and in fact, require) that all places we refer to first are of type U and of

second of type V. This includes declarations of instance variables, formal parameters, and return

types.

Only when we construct an actual GenericPair object do we specify the types we wish to use.

See in the provided main method how this is done.

Associations

Let’s consider a very simple example of a data structure called an Association.

As the name suggests, an Association is a way to associate pairs of objects, one of which is

the key and one of which is the value. Unlike the “pair” structures we just considered, once

created, the key of an Association cannot be changed, only the value can.

This is another “general purpose” structure, but one with the above restriction.

When developing any such structure, there are some questions to be answered first.

• What should such a structure look like?

• What instance variables will it need?

• What constructors should be provided?

• What methods will it need?

13

CSIS 210 Data Structures Fall 2016

As we have seen, we have two main options when developing a generic class. We can develop our

structures to hold references to Objects and then use them to store instances of any Java class, or

use type parameters.

Before we make use of these structure soon, let’s take a look at the implementation of each that is

provided with the supplemental Bailey text’s “structure package”.

The Object-based implementation:

See Structure Source:

structure/Association.java

The generic implementation:

See Structure Source:

structure5/Association.java

This class is defined as part of package structure, meaning it can access protected

entries of other classes in the structure, and those classes can access class Association’s

protected items.

The actual implementation of the Association class is pretty straightforward. A couple of

quick notes:

• We require a key to construct a new Association, but the value is optional. If not

provided, the value part defaults to null.

• Two Associations are considered equal (by the equals method) if their keys are the

same, regardless of their values.

• We have an accessor for the key (getKey) but no mutator. Once created, the key of an

Association may not be modified.

• For the value, we have both an accessor (getValue) and a mutator (setValue).

We will see examples that use the Association class soon.

14

