
Computer Science 202
Introduction to Programming
The College of Saint Rose
Fall 2013

Topic Notes: Repetition

Repetition
People find repetition boring. Fortunately, computers don’t feel this way. This is fortunate because
repetition is the only way we can exploit the full power of a computer. As we discussed in the first
class, part of the computer’s power comes from the fact that it can follow the instructions stored
within its memory rapidly without waiting for a human being to press a button or flip a switch.

In all of the examples we have considered so far, the sequences of instructions preformed when a
mouse event occurs are quite short and then the computer has to wait for us again. The computer
works for a fraction of a second then waits. We could get the computer to do more work in response
to our mouse events by writing methods with thousands or millions of instructions, but this would
be painful.

As a simple example, suppose we want to compute all of the perfect squares (i.e., 1, 4, 9, 16,
etc.) that are less than 100. We could write a program to print themout one by one, each with
its own output statement. But what about all perfect squares less than 1,000? Or 1,000,000? Or
1,000,000,000? None of us are signing up to write that program with thousands of printouts.

But we can get the computer to execute thousands or millions ofinstructions without writing thou-
sands or millions of instructions ourselves: we can have thecomputer execute the same instructions
over and over and over again.

At first, this may seem like a boring and inefficient use of the computer. In fact, when in comes to
following instructions, doing the same thing over and over again can be very interesting. Think of
the scribble program or the Spirograph program. Each time wedrag the mouse in these programs,
the computer “does the same thing” in the sense that it executes the same instructions — the body
of onMouseDrag. Each time these instructions are executed, however, the computer actually
does something different because the meaning of at least oneof the variables referenced in the
instructions,point, has changed.

Consider this example, where we get some “interesting” behavior through repeating the same
instructions without depending on changes in the mouse position.

See Example: RailroadClick

Here, we draw a railroad track, one railroad tie at a time, by clicking the mouse.

Each time the mouse is clicked, theonMouseClick method does the same things. It creates
a FilledRect that looks a bit like a railroad tie and it increases the valueassociated with the
variabletiePosition. BecausetiePosition is increased with each click, the next click



CSC 202 Introduction to Programming Fall 2013

draws its tie a little farther over in the screen. To prevent the program from wasting time by
drawing ties no one will ever see, anif statement is included that skips the creation of new ties
oncetiePosition gets large enough.

It is painful to have to click repeatedly to get the ties drawn. Instead we would like the computer
to continue drawing ties while they are still on the screen. Java provides thewhile statement, or
“while loop”, to perform repeated actions. Java includes other looping constructs that we will see
later in the semester.

The syntax of awhile statement is:

while (condition)
{

...
}

As in theif statement, the condition used in a while must be some expression that produces a
boolean value. The statements between the open and closed curly brackets are known as the
bodyof the loop.

A common way the while loop is used is as follows:

while (condition)
{

do something
change some variable so that next time you do

something a bit differently
}

Armed with this construct, we can draw all of our railroad ties in thebegin method.

See Example: Railroad

As in this example, the condition controlling thewhile loop will usually involve the variable
that’s changing. If nothing in the condition changes, then the loop will never terminate. Such
a condition is called aninfinite loop. We avoid this, in general, by ensuring that our loops have
a precise stopping condition. While we might be able to look atan algorithm and say “hey, we
should stop now”, Java will not (and in fact no computer can, in general) determine if a loop will
not stop.

Armed with this construct, we return to one of our motivatingexamples to see awhile loop in a
Java application rather than a graphical applet:

See Example: PerfectSquares

Two examples to develop in class:

Graph paper and random placement of random ovals.

2



CSC 202 Introduction to Programming Fall 2013

Loops for Error Checking
To motivate the use of loops for error checking, consider this Java application:

See Example: MassPikeTolls

The comment at the top of the Java program describes the problem.

We end up with 3 possible outputs:

• There is a full toll if both entry and exit were at an interchange numbered 6 or higher, or if
we are driving a truck.

• There is no toll if both entry and exit were at an interchange numbered 6 or lower, and we
are not driving a truck.

• There is a toll on only part of the trip (east of interchange 6)if we entered or exited on one
side of interchange 6

See the comments throughout the Java program for more information. Note in particular these new
Java methods and constructs:

• The use ofSystem.exit(1) to terminate the program when an error occurs (in this case,
an invalid input was encountered).

• The use of a more complex form ofJOptionPage.showMessageDialog to more
clearly indicate an error message as opposed to an informational message like those we
have used previously.

• The use of theString’s equals method to compareString values. We cannot use==
to compareStrings for equality in most cases. Java will accept it, but it does not have the
meaning we wish it to have in this context. More on this later in the semester.

The main problem with this program is that it simply exits with an error if invalid inputs are
presented. We can use loops to reissue prompts and reread input when an invalid value is entered.

See Example: MassPikeTollsBetter

The changes are all at the start of the program while we input values.

See the comments there for details.

The do-while Loop
Thewhile loop we saw in the last few examples is called apre-test loop. That is, we check the
condition before we enter the first time. This allows awhile loop to execute its body 0 times if
the condition is initially false.

3



CSC 202 Introduction to Programming Fall 2013

In some circumstances, we want to execute the loop at least once. Such a loop is called apost-test
loop.

Consider the problem where we have a sequence of numbers to read in, say prices of items at a
supermarket checkout, for which we want to keep a running total to report at the end.

Java provides a construct we can use for this purpose – thedo-while loop.

It is basically the same as awhile loop, except we begin it with the keyworddo, follow with the
body of the loop, and end it with awhile keyword and condition.

do
{

...
} while (condition);

See Example: Checkout

This example demonstrates thedo-while construct.

This example also introduces the declaration, construction, and use ofDecimalFormat objects
to format our floating-point output. We will see more examples later. But the essentials:

• Like Scanner andJOptionPane, we need to tell Java if we intend to use aDecimalFormat
with

import java.text.DecimalFormat;

• Before we make use of one, we need to declare a variable of typeDecimalFormat and
construct an instance. The parameter we pass to thisconstructoris the number of digits and
any other characters we want. There are two examples in this proram, more in the text.

• When we want to print out a floating point value as formatted by one of theseDecimalFormat
objects, we pass the floating point value to the object’sformat method. This returns a
String representation of that value using the specified format.

One other new Java construct here is the+= assignment operator:

total += itemPrice;

Much like the++we saw recently for the increment operation (and the corresponding-- operation
for decrement), this is a shorthand notation for a common programming task: adding a value to a
variable and storing the result back in that variable:

total = total + itemPrice;

4



CSC 202 Introduction to Programming Fall 2013

This shorthand exists for all of the standard arithmetic operators:-=, *=, /= and%=.

For example, if we wanted to double the value in a variablex, we could use the shorthand:

x *= 2;

You are never going to be required to use these shorthand operators, but they are convenient, and
you will need to recognize them in my examples.

Counting Loops
All of the loops we wish to have in our programs can be written using thewhile anddo-while
constructs we have just seen.

However, most programming languages include another construct that is typically used forcount-
ing loops.

Our first example will be a straightforward one: calculatingthe sum of the 10 integers.

There are four pieces of information needed here:

1. The name of a variable that will contain the values as we count

2. The first value to be given to the variable

3. The last value to be given to the variable (or sometimes, a value beyond that)

4. The amount by which we change the value each time around theloop (allowing us to count
backwards, or by 2’s or any number of other variations)

Java’sfor loop organizes these components in a very particular format:

for (int number = 1; number <= 10; number++)
{

// do stuff - but omit number++ at end
}

The code in the parentheses consists of 3 parts; it is not justa condition as inif or while
statements. The parts are separated by semicolons. The firstpart is executed once when we first
reach thefor loop. It is used to declare and initialize the counter. The second part is a condition,
just as inwhile statements. It is evaluated before we enter the loop (ı,e it is a pre-test loop)
and before each subsequent iteration of the loop. It defines the stopping condition for the loop,
comparing the counter to the upper limit. The third part performs an update. It is executed at the
endof each iteration of thefor loop, just before testing the condition again. It is used to update
the counter.

5



CSC 202 Introduction to Programming Fall 2013

See Example: Sum1To10

Notice how thefor localizes the use of the counter. This has two benefits. First, it simplifies the
body of the loop so that it is somewhat easier to understand the body. More importantly, it becomes
evident, in one line of code, that this is a counting loop.

Other variations

Many variations are possible and we will see them frequentlythroughout the remainder of the
course. For example, we couldcount downinstead of up:

See Example: Countdown

This includes not only a count down loop, but a loop whose starting condition depends on the
value in a variable instead of an integer constant. We can useany arithmetic expression for the
initialization and any boolean expression for the stoppingcondition.

If we wanted to count by 2’s to add up the even numbers:

See Example: Sum2ToNBy2

We can compute some number of terms of the geometric sum

1

2
+

1

4
+

1

8
+

1

16
+ ...

If we continue this sum infinitely, the series sums to 1 (can you prove it?).

See Example: GeometricFractionalSum

This example has a straightforward counting loop structure, but has more work to do each time
around the loop. Not only do we need to make sure we iterate theproper number of times, we also
need to update the value of the next term to be added each time around.

The VisibleImage object
We take a break from loops for a brief look at a new Objectdraw object type that you’re likely to
enjoy using.

See Example: Snowman

In the program above, we drag a picture of a snowman around thescreen. The picture comes from
a “gif” file namedsnowman.gif.

The image is certainly too complex to draw using our ObjectDraw primitives. Fortunately, we can
read an image from a file and save it as an object with typeImage. Image is a built-in Java
class from the libraryjava.awt. Hence you need to make sure that any program usingImage
importsjava.awt.Image or java.awt.*.

The first line of thebegin method of theSnowman class shows how to do this when given a
“gif” file (a particular format for holding images on-line):

6



CSC 202 Introduction to Programming Fall 2013

snowManPic = getImage("snowman.gif");

wheresnowManPic is an instance variable declared to have typeImage. Downloading a “gif”
file can often be slow, so we usually will want to create an image from the “gif” file at the beginning
of a program and save it until we need it. If you download “gif”files in the middle of your program,
you may cause a long delay while the computer brings it in froma file on a local disk or fileserver.

While objects of classImage can hold a picture, they can’t do much else. We would like to
create an object that behaves like our other graphics objects (e.g., FramedRect) so that it can be
displayed and moved around on our canvas.

The classVisibleImage from the ObjectDraw library allows you to treat an image roughly
as you would a rectangle. In fact, imagine aVisibleImage to be a rectangle with a picture
embedded in it. You can do most things you can do with a rectangle, except that there’s a neat
picture on top.

To create a newVisibleImage:

new VisibleImage( anImage, xLocation, yLocation, canvas);

For example,new VisibleImage(snowManPic, 10, 10, canvas); would create an
object of typeVisibleImage from the image insnowManPic and place it oncanvas at
location (10,10), with size equal to the size of the image it contains.

If you associate a name with yourVisibleImage, you can manipulate it using some familiar
methods:

VisibleImage snowMan;

And then later:

snowMan = new VisibleImage(snowManPic, 10, 10, canvas);

snowMan.setWidth(124);
snowMan.setHeight(144);

Our original snow man image is large: 619x718 pixels, but we shrunk him down to a more reason-
able size.

What do you think happens if we say:

snowMan.setColor(Color.green);

Nothing! It’s not an error, but nothing is done for you either! Because the picture already has its
own colors, it wouldn’t make sense to change it to a solid color. Similarly, the value returned by
snowMan.getColor() is alwaysColor.black, no matter what colors are in the image!

7



CSC 202 Introduction to Programming Fall 2013

The rest of the code for theSnowman class is just a variation on the earlier programs that allowed
us to drag around squares and T-shirts.

Another example of the use of aVisibleImage that also uses a loop, demonstrating that we
only need to usegetImage once, and can then create as manyVisibleImages as we want
with that oneImage.

See Example: SnowyNight

See the comment near the bottom of thebegin method for more about how we ensure that we
can see all of the snowflakes while allowing them to be partially obscured on either side or the top
of the canvas.

More Advanced Loops
Now that we have seen how important loops are, and have practiced with them in so many contexts,
we step back and discuss more complex loops.

See Example: Knitting

Here, each time the mouse is clicked, we knit a scarf.

If you look carefully at the pictures generated, you will seethat the scarf is formed by overlapping
circles. It is easiest to develop this by first writing code togenerate a row, then expand it to generate
the correct number of rows, in the correct positions.

To draw a row, we will have awhile loop. Each time through the loop we increase the value ofx
position as well as bump up our counter of the number of columns drawn so far,numCols.

That wasn’t too hard, but now we’d like to create successive rows. Each time we start a new row,
there are a number of things that we will need to take care of:

1. We need to reset the value ofx so that we start drawing at the beginning of the row rather
than where we left off.

2. We to increase the value ofy so that rows won’t be drawn on top of each other.

3. We need to resetnumCols back to 0 so that it will keep the correct count when we restart
drawing a row.

4. We need to bump upnumRows each time through.

Now all we need to do is to repeatedly execute the code for drawing a row by placing it inside an
enclosingwhile loop. This is our first example of anested loopstructure: a loop that executes
within a loop.

There is nothing mysterious about a nested loop. The inner loop is simply part of what the outer
loop does over and over.

8


