Computer Science 202

Introduction to Programming
The College of Saint Rose
Fall 2013

Topic Notes: File I/O

Nearly all computer programs need to do some input and o(itj@jtto perform anything useful.

To this point, whenever we have needed input for our progravashave gotten it from the key-
board (whether it's a Jadcanner usingSyst em i n or a Javal Opt i onPane dialog box, or
mouse input through our mouse event methods). If we wantrtelhwe program again on the same
inputs, we need to type in all of the inputs again or produesesdime sequence of mouse events.

Textual output has always been sent to a console window oalaglbox. Once we exit our
program, unless we have done a copy and paste to save the, aitplost.

This is another restriction we need to overcome. A very commechanism for doing this is to
take input from and place outputfikles. As you certainly as well aware, reading and writing files
is something the programs you use regularly do all the time.

One complication we will see is that we will want to deal wlain text files These are files that
consist of nothing but a series of characters (letters, musalpunctuation). Many of the files we
deal with every day (Word documents, web documents, PDFrdents) are specially-formatted
files that contain much more information that just the teglytbontain, often in very cryptic and
complex formats. Java is capable of dealing with a wide %aeé file formats, but we want to

concentrate for now only on plain text.

When we wish to create, view, or modify plain text files (ouéstd our Java programs) at least, we
will need to make sure we use an application that can do sagdsop

In Windows, you will want to use Notepad. This is a plain tediter that should do just what we
want when manipulating plain text files. It should be prettgightforward to use.

If you are on a Mac, you will want to use the TextEdit applioati When you open it, make sure
you are in “Plain Text Mode” by looking in the Format menu. Huwsee an entry labeled “Make
Rich Text”, then you're already in plain text mode. If you sédake Plain Text”, choose that
option to enter into plain text mode.

Java File Output

Writing data to a file in Java is, fortunately, fairly similar the mechanism we use to print to the
screen.

See Example: HelloWorldFile

See the comments in that file for details on what we need tordsurinmary:

e 3newi nport statements; ava. i o. Fil e,java.io.| OException,andjava.io.PrintWite



CSC 202 Introduction to Programming Fall 2013

Add at hr ows | CExcepti on at at the end of themai n method signature before ifs

Construct &ri nt Wi t er object, passing to the constructonaw Fi | e, to which you
pass the name of the file.

Print text to the file usingr i nt andpr i nt | n method callsonthBri nt Wi t er. These
work the same aSyst em out . pri nt/ pri ntl| n exceptthey produce file output.

CallthePri nt Wi t er’s cl ose method when finished.

We can use this mechanism to store the results of any progranmsé later. For example, let's
write a program that reads in a series of numbers and credilesnath those numbers followed
by the area of a circle with that number as its radius.

See Example: CircleAreas

Java File I nput

As was the case with output, using files for input to our Javay@ms is also quite similar to
what we have been doing when reading from the keyboard. tnvacwill continue to use Java’s
Scanner , just in a slightly different way.

See Example: AddNumbersFromFile

Rather than constructing o@canner with a parameter oSyst em i n, we pass &i | e. If
that file exists, it will be opened for reading, and we can bseScanner just as we used the
Scanner s that read from the keyboard.

We saw with keyboard input that a sentinel value can help stoja loop that reads values. That
technique also works with filBcanner s:

See Example: AddNumbersFromFileSentinel

But we can do better than that. When reading from a file, we catimeenreading until we
encounter the end of the file.

See Example: AddNumbersFromFileAll

We are not restricted to reading numbers. Here is a progratrctiunts the number of words in a
file:

See Example: WordCount

Here, we use theext method to read the input file word by word. We can tell therenarenore
words to read when thieas Next method return$ al se.

There is no reason to restrict to only file input or only file mutt
See Example: Shout

This example uses both an input file and an output file. We nead input file, line by line, and



CSC 202 Introduction to Programming Fall 2013

write each line back out to an output file. However, before wigeveach line to the output, we call
theSt ri ng’st oUpper Case method to convert all of the letters to upper case.

There is also a oLower Case method we can use if we'd like.



