
Computer Science 202
Introduction to Programming
The College of Saint Rose
Fall 2013

Topic Notes: File I/O

Nearly all computer programs need to do some input and output(I/O) to perform anything useful.

To this point, whenever we have needed input for our programs, we have gotten it from the key-
board (whether it’s a JavaScanner usingSystem.in or a JavaJOptionPane dialog box, or
mouse input through our mouse event methods). If we want to run the program again on the same
inputs, we need to type in all of the inputs again or produce the same sequence of mouse events.

Textual output has always been sent to a console window or a dialog box. Once we exit our
program, unless we have done a copy and paste to save the output, it is lost.

This is another restriction we need to overcome. A very common mechanism for doing this is to
take input from and place output infiles. As you certainly as well aware, reading and writing files
is something the programs you use regularly do all the time.

One complication we will see is that we will want to deal withplain text files. These are files that
consist of nothing but a series of characters (letters, numbers, punctuation). Many of the files we
deal with every day (Word documents, web documents, PDF documents) are specially-formatted
files that contain much more information that just the text they contain, often in very cryptic and
complex formats. Java is capable of dealing with a wide variety of file formats, but we want to
concentrate for now only on plain text.

When we wish to create, view, or modify plain text files (outside of our Java programs) at least, we
will need to make sure we use an application that can do so properly.

In Windows, you will want to use Notepad. This is a plain text editor that should do just what we
want when manipulating plain text files. It should be pretty straightforward to use.

If you are on a Mac, you will want to use the TextEdit application. When you open it, make sure
you are in “Plain Text Mode” by looking in the Format menu. If you see an entry labeled “Make
Rich Text”, then you’re already in plain text mode. If you see “Make Plain Text”, choose that
option to enter into plain text mode.

Java File Output
Writing data to a file in Java is, fortunately, fairly similar to the mechanism we use to print to the
screen.

See Example: HelloWorldFile

See the comments in that file for details on what we need to do. In summary:

• 3 newimport statements:java.io.File,java.io.IOException, andjava.io.PrintWriter



CSC 202 Introduction to Programming Fall 2013

• Add athrows IOException at at the end of themain method signature before its{.

• Construct aPrintWriter object, passing to the constructor anew File, to which you
pass the name of the file.

• Print text to the file usingprint andprintlnmethod calls on thePrintWriter. These
work the same asSystem.out.print/println except they produce file output.

• Call thePrintWriter’s close method when finished.

We can use this mechanism to store the results of any program for use later. For example, let’s
write a program that reads in a series of numbers and creates afile with those numbers followed
by the area of a circle with that number as its radius.

See Example: CircleAreas

Java File Input
As was the case with output, using files for input to our Java programs is also quite similar to
what we have been doing when reading from the keyboard. In fact, we will continue to use Java’s
Scanner, just in a slightly different way.

See Example: AddNumbersFromFile

Rather than constructing ourScanner with a parameter ofSystem.in, we pass aFile. If
that file exists, it will be opened for reading, and we can use theScanner just as we used the
Scanners that read from the keyboard.

We saw with keyboard input that a sentinel value can help us tostop a loop that reads values. That
technique also works with fileScanners:

See Example: AddNumbersFromFileSentinel

But we can do better than that. When reading from a file, we can continue reading until we
encounter the end of the file.

See Example: AddNumbersFromFileAll

We are not restricted to reading numbers. Here is a program that counts the number of words in a
file:

See Example: WordCount

Here, we use thenext method to read the input file word by word. We can tell there areno more
words to read when thehasNext method returnsfalse.

There is no reason to restrict to only file input or only file output.

See Example: Shout

This example uses both an input file and an output file. We read in an input file, line by line, and

2



CSC 202 Introduction to Programming Fall 2013

write each line back out to an output file. However, before we write each line to the output, we call
theString’s toUpperCase method to convert all of the letters to upper case.

There is also atoLowerCase method we can use if we’d like.

3


