
Computer Science 202
Introduction to Programming
The College of Saint Rose
Fall 2013

Topic Notes: Java Applications

While we have been and will continue to keep a graphics theme toour course this semester, not all
programs are graphical or even event-driven. We will take a short break from all of that to consider
some programs that operate on textual and numeric data, readfrom the keyboard and printed to
the screen. Later, we will see how we can also interact with files on our computer’s hard disks or
network devices.

Java Applications
The programs we have considered so far, those which have a class the “extends WindowController”
are called Javaapplets. These usually have a graphical user interface (ours has been a simple one
so far), and are designed to be able to be embedded into web pages like is done for class examples.
The other class of Java programs are called orconsole applications or sometimes justapplications.

As you are already familiar with some of Java’s syntax, we will proceed by looking at a few
examples and discussing what is different from the kinds of programs we’ve seen so far.

Let’s start by looking at a “Hello, World!” application program in Java. It is a longstanding
tradition among programmers to write their first program in any language to print out that message,
and this is different enough from what you’ve been doing thatwe’ll start there.

/*
A Hello World example in Java

*/
// class example
public class HelloWorld {

public static void main(String[] args) {

System.out.println("Hello, World!");
}

}

It starts out with some comments, just as you’ve been (hopefully) doing.

Here, our class does notextend anything. In particular, since it doesn’t extendWindowController,
it will not have a graphical window or access to a canvas. It also will not know how to respond to
mouse events.

Instead of abegin method, the first method that will be invoked is calledmain:



CSC 202 Introduction to Programming Fall 2013

public static void main(String[] args) {

This particular method definition starts with 3 keywords:public, static, andvoid. The
meanings of each of these will become more clear with furtherexamples.

It then has the name of the method,main. This is an identifier.main has a special meaning here
because that is the name of the method that will be executed when we run our program. In general,
methods can use any name that is not a keyword. However, we will see that there arenaming
conventions that give some rules about how methods and other identifiers should be named.

All method definitions have a list ofparameters inside parentheses. We saw parameters to our
mouse event methods, and you will be seeing much more about methods and parameters soon.
For now, we can just follow the rule that ourmain method must have a parameter ofString[]
args as this one does.

In our case, the method body consists of just one statement:

System.out.println("Hello, World!");

To type in and run this program is similar to what we’ve been doing all semester, but different
enough that it’s worth going through.

1. Launch BlueJ, create a project as we have been doing all along.

2. Click “New Class...” and enter a class name, but instead of “WindowController” class, you
will choose “Application Class”.

3. Click on the class icon that appears, and you should see the skeleton of a Java application
rather than an “WindowController”.

4. Add the printout from above to the providedmain method.

5. Compile as you have been doing by hitting the “Compile” button.

6. Back in the project window, you can right-click on the classicon to bring up a menu. It won’t
have the “Run Controller’ option. Instead, choose “void main(String args[])”.
An extra dialog window will come up. For now, you can just hit “Ok”.

7. You should get your message in the Terminal window.

Glorified “Hello, World!”
The simplest class of programs are also the most excruciatingly boring – ones that just print out
the same message or set of messages every time we run them. Such programs are rarely useful in
practice and really serve only to introduce the basics of a programming language.

2



CSC 202 Introduction to Programming Fall 2013

But let’s look at one anyway.

See Example: Seuss

This is basicallyHelloWorld all over, but there are a few little items that are new.

• Notice that the sentence “We know how.” is printed on the sameline as “Well, we can do it.”.
That’s because we used a different printing method for the latter: System.out.print.
This one works the same asSystem.out.println except that the output is not advanced
to the next line at the end.

• The last statement includes someescape sequences that cause the output to be formatted a
bit differently than it would otherwise appear. Escape sequences begin with a\ character
and are followed by acontrol character that defines the behavior of the sequence. Here, we
have three:

1. \t inserts a “tab” character, effectively indenting our output in this case,

2. \n advances the output to a new line, and

3. \" prints the double quote character, which would otherwise beimpossible since a
regular" character would be interpreted as the end of the text we are trying to print.

One bit of terminology at this point: the methodsSystem.out.println andSystem.out.print
are part of theJava API (Application Programmer Interface). Any valid Java installation comes
equipped with an extensive collection of pre-written software that our programs can use.

These are standard on all Java installations. We have also been making use of the ObjectDraw
library, which requires some extra setup.

Interactive Programs
To create nearly any interesting program, we need to be able to provide it with input. This will
allow the program to react differently when presented with different inputs.

See Example: HelloYou

It might not seem like this should be much more complicated than our previous programs, but it
turns out that to do this in Java, we need to utilize a number ofnew ideas and Java constructs.

First, we need to figure out how to get information from the keyboard into our program. To do this,
we again turn to the Java API. There are several mechanisms available, a few of which we will see
this semester. But we will start with one called aScanner.

In order to use aScanner, we will need to tell Java that we intend to use it, by inserting the line:

import java.util.Scanner;

3



CSC 202 Introduction to Programming Fall 2013

at the top of our program (before the class header). We will see later how to determine exactly
what to “import” to use various Java API functionality, but for now, just know that this is what we
need to do to use aScanner.

Then, in ourmain method, where we wish to access information from the keyboard, weconstruct
aScanner that we can use in our program. This is done with the line:

Scanner input = new Scanner(System.in);

There’s actually quite a bit going on in this line, and we’ll examine it more carefully in a minute.
But for now, we’re creating aScanner that usesSystem.in (which is Java’s cryptic way of
saying “what is typed at the keyboard”), and giving it a name,input. input is a local variable
– one which exists only withinmain, unlike theinstance variables we had in our graphical classes
that exist in all methods of our class.

Now that we have aScanner calledinput, we can ask it to give us the next chunk of text that
was typed at the keyboard. There are many possibilities for what we mean by “chunk” but for now,
we just want the word that someone types in as their name. Java’s Scanner provides a method
that does just that, callednext.

We will also need a name for the word that was typed in, so we canprint it out later. This is all
accomplished with the line:

String name = input.next();

Before we carry on further, we need to consider the concept of variables a little more closely.

We know that avariable is a named storage location in the computer’s memory. We use avariable
when we have determined that there is some piece of data that we have in one Java statement, and
we need to remember that information for use in later statements.

When we need a variable in our program, we mustdeclare that variable to Java, which is just a
fancy way of saying that we are going to introduce a name to ourJava program and tell Java what
type, or kind, of data we intend to store there. We have been doing this with instance variables
already, where we place the declaration at the top of the class, outside of any method, and include
the directiveprivate.

A local variable declaration takes one of two forms:

type name;

or

type name = initialValue;

4



CSC 202 Introduction to Programming Fall 2013

where “type” is thedata type (or “ kind of data”) we will store, and “name” is the identifierwe
intend to use to refer to that data. In the second form, we alsoinitialize the variable to have a
specific value.

We will see many data types that store a variety of kinds of information. For now, we have two:

• Scanner – which is the keyboard input mechanism we wish to use

• String – a collection of text, like a word or sentence

We give ourScanner the nameinput and theString the namename.

When naming our local variables, we need to keep in mind the same considerations we used for
instance variables:

• The name must be a valid Java identifier. This means it must consist only of letters, numbers,
the dollar sign character, and the underscore character (though it can only start with a letter).

• The name should follow Java’s naming conventions. Recall that for variables, we use lower-
case letters, except when we have a name that is made up of multiple words, in which case
we capitalize all but the first word.

• The name should be meaningful. That is, it should give some indication of what the variable
is to be used for. The names here satisfy that requirement:input implies that this is where
we get our input, andname implies that this is the name of something.

Once we have a variable, we can make use of its value later in our program. We do that here when
we call thenext method of ourScanner namedinput and when we use theString named
name in theSystem.out.println statement at the end of our program.

Another Example, Adding in JOptionPane I/O
We will next consider another Java application, but with theadded bonus of using a different
mechanism for input and output.

The problem: we wish to write a program that calculates the number of full payments needed for
a no-interest loan where we are given a loan amount and desired monthly payment. This number
is reported. If additional funds are due after those full payments are made, that is reported as well.

See Example: NoInterestLoan

The comments in that example describe in detail three new items:

• The use ofJOptionPane.showInputDialog to bring up a dialog box with a message
and a text box for input, and returning the text typed into thebox as aString.

5



CSC 202 Introduction to Programming Fall 2013

• The use of Java’sInteger.parseInt method to convert aString to anint, which is
necessitated here because theJOptionPane.showInputDialog only returnsString
values.

• The use of Java’sJOptionPane.showMessageDialog to bring up a dialog box to
display some program output.

Use with Applets
There is nothing special about Java applications in their ability to useScanners andSystem.out.println
or theJOptionPanes for I/O. We can do the same with an Objectdraw program (in this case,
just using a single call to aJOptionPane,showInputDialog):

See Example: BasketballName

6


