Computer Science 202

Introduction to Programming
The College of Saint Rose
Fall 2013

Topic Notes: Java Applications

While we have been and will continue to keep a graphics theroartoourse this semester, not all
programs are graphical or even event-driven. We will takeaastreak from all of that to consider
some programs that operate on textual and numeric datafn@adhe keyboard and printed to
the screen. Later, we will see how we can also interact wiéls fin our computer’s hard disks or
network devices.

Java Applications

The programs we have considered so far, those which havesthméxt ends W ndowControl | er”
are called Javapplets. These usually have a graphical user interface (ours hasdsinple one

so far), and are designed to be able to be embedded into web fiegis done for class examples.

The other class of Java programs are callecbasole applications or sometimes jusapplications.

As you are already familiar with some of Java’s syntax, wd piibceed by looking at a few
examples and discussing what is different from the kindsofams we’ve seen so far.

Let's start by looking at a “Hello, World!” application progm in Java. It is a longstanding
tradition among programmers to write their first programng Enguage to print out that message,
and this is different enough from what you've been doing wetl start there.

| *
A Hello Wrld exanple in Java
*/
/1l class exanple
public class HelloWwrld {

public static void main(String[] args) {

Systemout.println("Hello, Wrld!'");
}

}
It starts out with some comments, just as you've been (hdlggfining.

Here, our class does next end anything. In particular, since it doesn’t extetindowCont r ol | er,
it will not have a graphical window or access to a canvas.sk afill not know how to respond to
mouse events.

Instead of dbegi n method, the first method that will be invoked is callesi n:

CSC 202 Introduction to Programming Fall 2013

public static void main(String[] args) {

This particular method definition starts with 3 keyworgsabl i ¢, stati c, andvoi d. The
meanings of each of these will become more clear with furtkamples.

It then has the name of the methaodhi n. This is an identifiermai n has a special meaning here
because that is the name of the method that will be executed wk run our program. In general,
methods can use any name that is not a keyword. However, weedlthat there areaming
conventions that give some rules about how methods and other identifiensid be named.

All method definitions have a list gfarameters inside parentheses. We saw parameters to our
mouse event methods, and you will be seeing much more abahbdwand parameters soon.
For now, we can just follow the rule that ooai n method must have a parameterSbfr i ng|]

ar gs as this one does.

In our case, the method body consists of just one statement:

Systemout.println("Hello, Wrld!'");

To type in and run this program is similar to what we've beemdall semester, but different
enough that it's worth going through.
1. Launch BlueJ, create a project as we have been doing alj.alon

2. Click “New Class...” and enter a class nhame, but instead ahtdivController” class, you
will choose “Application Class”.

3. Click on the class icon that appears, and you should se&kéheten of a Java application
rather than an “WindowController”.

4. Add the printout from above to the providedi n method.
5. Compile as you have been doing by hitting the “Compile” butto

6. Backin the project window, you can right-click on the class to bring up a menu. It won't
have the “Run Controller’ option. Instead, choosei'd mai n(String args[])”.
An extra dialog window will come up. For now, you can just HQK”.

7. You should get your message in the Terminal window.

Glorified “Hello, World!”

The simplest class of programs are also the most excrugigtiboring — ones that just print out
the same message or set of messages every time we run thempr8gcams are rarely useful in
practice and really serve only to introduce the basics obgnamming language.

CSC 202 Introduction to Programming Fall 2013

But let’s look at one anyway.
See Example: Seuss

This is basicallyHel | oWwbr | d all over, but there are a few little items that are new.

¢ Notice that the sentence “We know how.” is printed on the skmeeas “Well, we can do it.”.
That's because we used a different printing method for tttertaSyst em out . pri nt.
This one works the same 8gst em out . pri nt | n exceptthat the outputis not advanced
to the next line at the end.

e The last statement includes somseape sequences that cause the output to be formatted a
bit differently than it would otherwise appear. Escape seges begin with & character
and are followed by aontrol character that defines the behavior of the sequence. Here, we
have three:

1. \'t inserts a “tab” character, effectively indenting our outjouthis case,
2. \ n advances the output to a new line, and

3. \" prints the double quote character, which would otherwisénggossible since a
regular’ character would be interpreted as the end of the text we @rgytto print.

One bit of terminology at this point: the methd8igst em out . pri nt | nandSyst em out . pri nt
are part of theJava API (Application Programmer Interface). Any valid Java inlstibn comes
equipped with an extensive collection of pre-written saite/that our programs can use.

These are standard on all Java installations. We have atso ibaking use of the ObjectDraw
library, which requires some extra setup.

Interactive Programs

To create nearly any interesting program, we need to be alpeowide it withinput. This will
allow the program to react differently when presented witfecent inputs.

See Example: HelloYou

It might not seem like this should be much more complicateah thur previous programs, but it
turns out that to do this in Java, we need to utilize a numbeewf ideas and Java constructs.

First, we need to figure out how to get information from theld@srd into our program. To do this,
we again turn to the Java API. There are several mechanisalalae, a few of which we will see
this semester. But we will start with one calle®@anner .

In order to use &canner , we will need to tell Java that we intend to use it, by insertime line:

i mport java.util.Scanner;

CSC 202 Introduction to Programming Fall 2013

at the top of our program (before the class header). We walllager how to determine exactly
what to “import” to use various Java API functionality, bot how, just know that this is what we
need to do to use &canner .

Then, in ounmai n method, where we wish to access information from the keyhoeae construct
aScanner that we can use in our program. This is done with the line:

Scanner input = new Scanner (Systemin);

There’s actually quite a bit going on in this line, and weitaenine it more carefully in a minute.
But for now, we're creating &canner that usesSyst em i n (which is Java’s cryptic way of
saying “what is typed at the keyboard”), and giving it a namgput . i nput is alocal variable
—one which exists only withimai n, unlike theinstance variableswe had in our graphical classes
that exist in all methods of our class.

Now that we have &canner calledi nput , we can ask it to give us the next chunk of text that
was typed at the keyboard. There are many possibilities fatwe mean by “chunk” but for now,
we just want the word that someone types in as their name!sJawanner provides a method
that does just that, callatext .

We will also need a name for the word that was typed in, so wepcim it out later. This is all
accomplished with the line:

String nane = input.next();

Before we carry on further, we need to consider the concepridibies a little more closely.

We know that avariable is a named storage location in the computer’s memory. We vagable
when we have determined that there is some piece of data ¢haave in one Java statement, and
we need to remember that information for use in later statésne

When we need a variable in our program, we ndeslare that variable to Java, which is just a
fancy way of saying that we are going to introduce a name tQJaua program and tell Java what
type, or kind, of data we intend to store there. We have been ddiisgwith instance variables
already, where we place the declaration at the top of theatagside of any method, and include
the directivepr i vat e.

A local variable declaration takes one of two forms:
type nane;

or

type nane = initial Val ue;

CSC 202 Introduction to Programming Fall 2013

where “type” is thedata type (or “ kind of data”) we will store, and “name” is the identifiare
intend to use to refer to that data. In the second form, we ialsi@lize the variable to have a
specific value.

We will see many data types that store a variety of kinds afrimiétion. For now, we have two:

e Scanner — which is the keyboard input mechanism we wish to use

e Stri ng - a collection of text, like a word or sentence

We give ourScanner the name nput and theSt r i ng the namenane.

When naming our local variables, we need to keep in mind theesamsiderations we used for
instance variables:

e The name must be a valid Java identifier. This means it musistonly of letters, numbers,
the dollar sign character, and the underscore charactardthit can only start with a letter).

e The name should follow Java’s naming conventions. Recdlfthaariables, we use lower-
case letters, except when we have a name that is made up gblewmtords, in which case
we capitalize all but the first word.

e The name should be meaningful. That is, it should give somlie@tion of what the variable
is to be used for. The names here satisfy that requirementut implies that this is where
we get our input, andane implies that this is the name of something.

Once we have a variable, we can make use of its value lateriprogram. We do that here when
we call thenext method of ourScanner named nput and when we use th®t r i ng named
nanme in theSyst em out . pri nt | n statement at the end of our program.

Another Example, Adding in JOpt i onPane I/O

We will next consider another Java application, but with #ueled bonus of using a different
mechanism for input and output.

The problem: we wish to write a program that calculates theber of full payments needed for
a no-interest loan where we are given a loan amount and desioathly payment. This number
is reported. If additional funds are due after those fullpapts are made, that is reported as well.

See Example: NolnterestLoan

The comments in that example describe in detail three nemsite

e The use 0flOpt i onPane. show nput Di al og to bring up a dialog box with a message
and a text box for input, and returning the text typed intolitbe as &St r i ng.

CSC 202 Introduction to Programming Fall 2013

e The use of Javaknt eger . par sel nt method to convert 8t r i ng to ani nt, which is
necessitated here becauseif@pt i onPane. show nput Di al og only returnsSt r i ng
values.

e The use of Java’dOpt i onPane. showvessageDi al og to bring up a dialog box to
display some program output.

Use with Applets

There is nothing special about Java applications in thdityatp useScanner sandSyst em out . printl n
or theJOpt i onPanes for I/0O. We can do the same with an Objectdraw program (im ¢hse,
just using a single call to &0pt i onPane, showl nput Di al og):

See Example: BasketballName

